Speech in an Hour

- Speech input is an acoustic wave form

Spectral Analysis

- Frequency gives pitch; amplitude gives volume
 - sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec)
 - Fourier transform of wave displayed as a spectrogram
 - darkness indicates energy at each frequency

Acoustic Feature Sequence

- Time slices are translated into acoustic feature vectors (~39 real numbers per slice)
- Now we have to figure out a mapping from sequences of acoustic observations to words.

The Speech Recognition Problem

- We want to predict a sentence given an acoustic sequence:
 \[s^* = \arg \max P(s \mid A) \]
- The noisy channel approach:
 - Build a generative model of production (encoding)
 \[P(A, s) = P(s) P(A \mid s) \]
 - To decode, we use Bayes’ rule to write
 \[s^* = \arg \max P(s \mid A) \]
 \[= \arg \max P(s) P(A \mid s) / P(A) \]
 \[= \arg \max P(s) P(A \mid s) \]
 - Now, we have to find a sentence maximizing this product
- Why is this progress?

Other Noisy-Channel Processes

- Handwriting recognition
 \[P(\text{text} \mid \text{strokes}) = P(\text{text}) P(\text{strokes} \mid \text{text}) \]
- OCR
 \[P(\text{text} \mid \text{pixels}) = P(\text{text}) P(\text{pixels} \mid \text{text}) \]
- Spelling Correction
 \[P(\text{text} \mid \text{typos}) = P(\text{text}) P(\text{typos} \mid \text{text}) \]
- Translation?
 \[P(\text{english} \mid \text{french}) = P(\text{english}) P(\text{french} \mid \text{english}) \]
Digitizing Speech

She just had a baby

- What can we learn from a wavefile?
 - Vowels are voiced, long, loud
 - Length in time = length in space in waveform picture
 - Voicing: regular peaks in amplitude
 - When stops closed: no peaks: silence.
 - Peaks = voicing: .46 to .58 (vowel [iy]), from second .65 to .74 (vowel [ax]) and so on
 - Silence of stop closure (1.06 to 1.08 for first [b], or 1.26 to 1.28 for second [b])
 - Fricatives like [sh] intense irregular pattern; see .33 to .46

Examples from Ladefoged

Simple Periodic Sound Waves

- Y axis: Amplitude = amount of air pressure at that point in time
 - Zero is normal air pressure, negative is rarefaction
- X axis: time. Frequency = number of cycles per second.
 - Frequency = 1/Period
 - 20 cycles in .02 seconds = 1000 cycles/second = 1000 Hz

Adding 100 Hz + 1000 Hz Waves

Spectrum

- Frequency components (100 and 1000 Hz) on x-axis
- Amplitude
Part of [ae] from “had”

- Note complex wave repeating nine times in figure
- Plus smaller waves which repeats 4 times for every large pattern
- Large wave has frequency of 250 Hz (9 times in .036 seconds)
- Small wave roughly 4 times this, or roughly 1000 Hz
- Two little tiny waves on top of peak of 1000 Hz waves

Back to Spectra

- Spectrum represents these freq components
- Computed by Fourier transform, algorithm which separates out each frequency component of wave.

- x-axis shows frequency, y-axis shows magnitude (in decibels, a log measure of amplitude)
- Peaks at 930 Hz, 1860 Hz, and 3020 Hz.

Mel Freq. Cepstral Coefficients

- Do FFT to get spectral information
 - Like the spectrogram/spectrum we saw earlier
- Apply Mel scaling
 - Linear below 1kHz, log above, equal samples above and below 1kHz
 - Models human ear; more sensitivity in lower freqs
- Plus Discrete Cosine Transformation

Final Feature Vector

- 39 (real) features per 10 ms frame:
 - 12 MFCC features
 - 12 Delta MFCC features
 - 12 Delta-Delta MFCC features
 - 1 (log) frame energy
 - 1 Delta (log) frame energy
 - 1 Delta-Delta (log frame energy)
- So each frame is represented by a 39D vector
- For your projects:
 - We’ll just use two frequencies: the first two formants

Why these Peaks?

- Articulatory facts:
 - Vocal cord vibrations create harmonics
 - The mouth is a selective amplifier
 - Depending on shape of mouth, some harmonics are amplified more than others

Vowel [i] sung at successively higher pitch.
Deriving Schwa

- Reminder of basic facts about sound waves
 - $f = \frac{c}{\lambda}$
 - $c =$ speed of sound (approx 35,000 cm/sec)
 - A sound with $\lambda = 10$ meters: $f = 35 \text{ Hz (35,000/1000)}$
 - A sound with $\lambda = 2$ centimeters: $f = 17,500 \text{ Hz (35,000/2)}$

Resonances of the vocal tract

- The human vocal tract as an open tube
- Air in a tube of a given length will tend to vibrate at resonance frequency of tube.
- Constraint: pressure differential should be maximal at (closed) glottal end and minimal at (open) lip end.

Computing the 3 Formants of Schwa

- Let the length of the tube be L
 - $F_1 = \frac{c}{4L} = \frac{35,000}{4 \times 17.5} = 500 \text{ Hz}$
 - $F_2 = \frac{c}{4/3L} = \frac{3c}{4L} = \frac{3 \times 35,000}{4 \times 17.5} = 1500 \text{ Hz}$
 - $F_3 = \frac{c}{4/5L} = \frac{5c}{4L} = \frac{5 \times 35,000}{4 \times 17.5} = 2500 \text{ Hz}$
- So we expect a neutral vowel to have 3 resonances at 500, 1500, and 2500 Hz
- These vowel resonances are called formants

Seeing formants: the spectrogram

- [Spectrogram images showing formants for different phonemes]
How to read spectrograms

- bab: closure of lips lowers all formants; so rapid increase in all formants at beginning of "bab"
- dad: first formant increases, but F2 and F3 slight fall
- gag: F2 and F3 come together: this is a characteristic of velars. Formant transitions take longer in velars than in alveolars or labials

HMMs for Speech

- Word Model
- Observation Sequence (spectral feature vectors)
- Gaussians
- Multivariate Gaussians
- Mixtures of Multivariate Gaussians

Viterbi Decoding

- P(\text{the I of})
- Null transition from the end state of each word to start state of all (both) words.

ASR Lexicon: Markov Models

- Null transition from the end state of each word to start state of all (both) words.