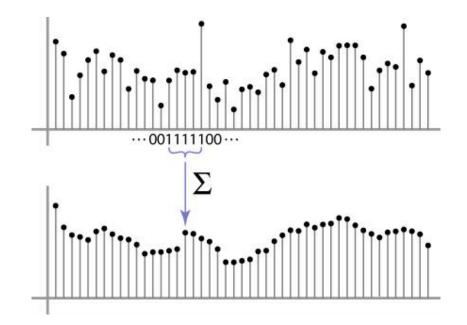
Convolution and Image Derivatives

CS194: Intro to Comp. Vision and Comp. Photo Alexei Efros, UC Berkeley, Fall 2021

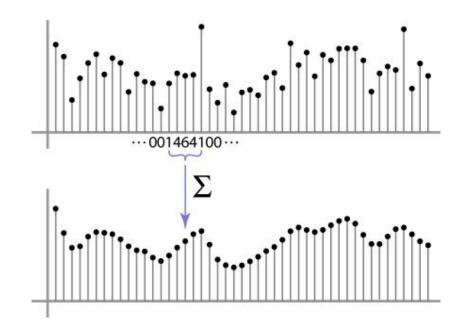
Moving Average

- Can add weights to our moving average
- Weights [..., 0, 1, 1, 1, 1, 1, 0, ...] / 5



Weighted Moving Average

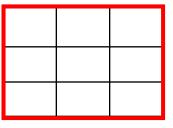
• bell curve (gaussian-like) weights [..., 1, 4, 6, 4, 1, ...]



Moving Average In 2D

What are the weights H?

-			C	/	_			_	
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



H[u, v]

F[x, y]

© 2006 Steve Marscł Slide by Steve Seitz

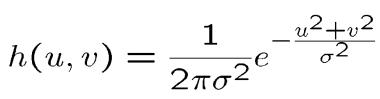
Gaussian filtering

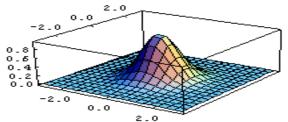
A Gaussian kernel gives less weight to pixels further from the center of the window

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

H[u, v]

F[x, y]

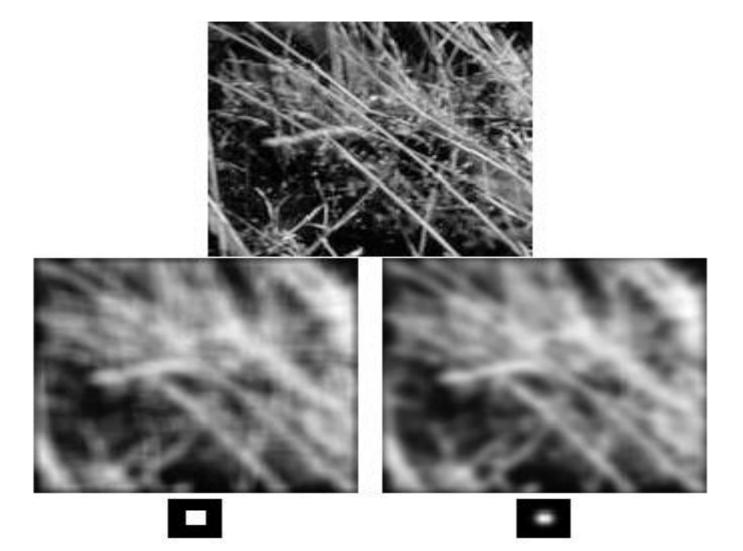




This kernel is an approximation of a Gaussian function:

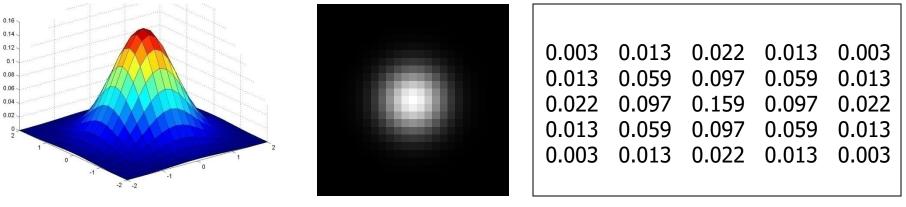
Slide by Steve Seitz

Mean vs. Gaussian filtering



Important filter: Gaussian

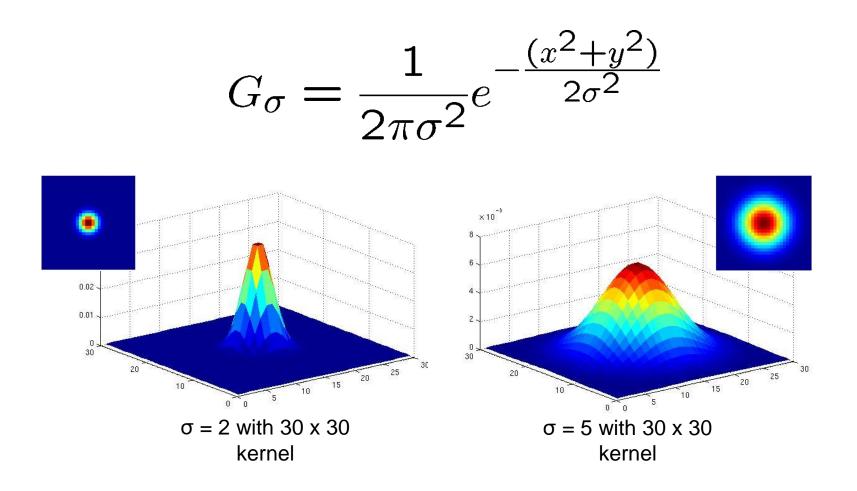
Weight contributions of neighboring pixels by nearness



5 x 5, $\sigma = 1$

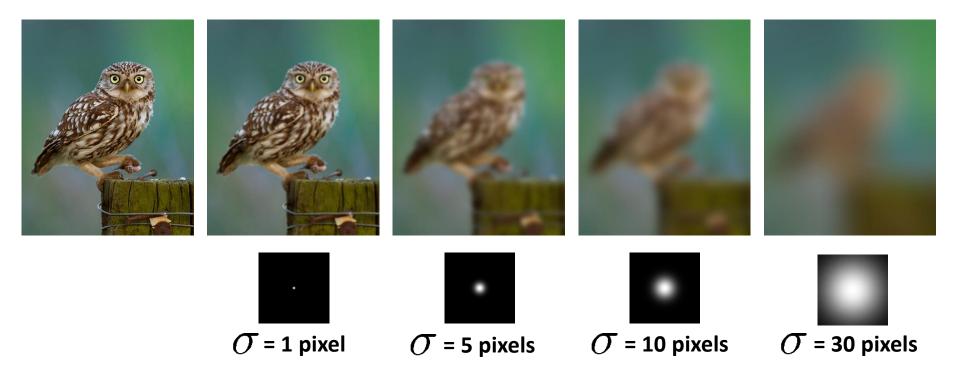
$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)^2}{2\sigma^2}}$$

Gaussian Kernel



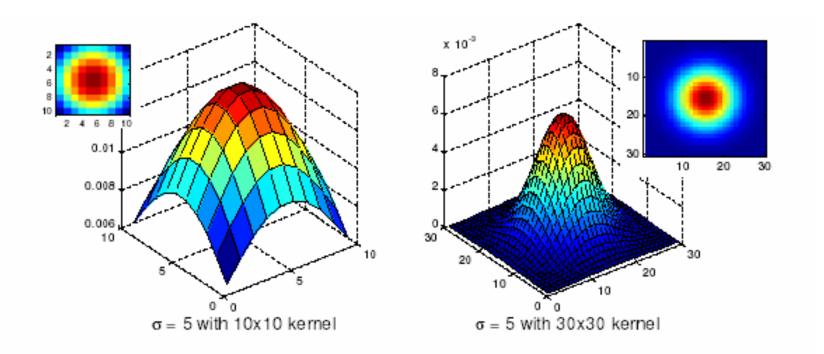
• Standard deviation σ : determines extent of smoothing

Gaussian filters



Choosing kernel width

• The Gaussian function has infinite support, but discrete filters use finite kernels

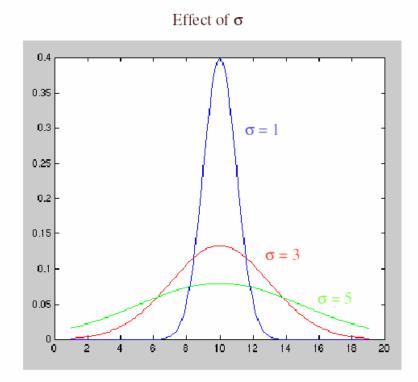


Practical matters

How big should the filter be?

Values at edges should be near zero

Rule of thumb for Gaussian: set filter half-width to about 3 σ



Cross-correlation vs. Convolution

cross-correlation: $G = H \otimes F$

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

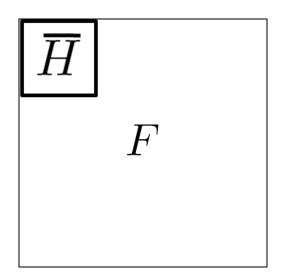
$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

It is written:

$$G = H \star F$$

Convolution is commutative and associative

Convolution



Convolution is nice!

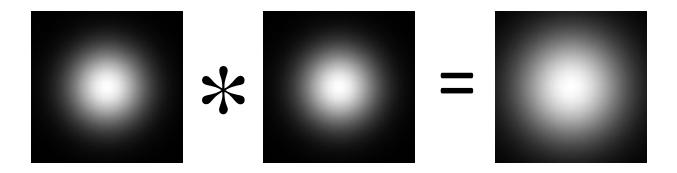
- Notation: $b = c \star a$
- Convolution is a multiplication-like operation
 - commutative $a \star b = b \star a$
 - associative $a \star (b \star c) = (a \star b) \star c$
 - distributes over addition $a \star (b+c) = a \star b + a \star c$
 - scalars factor out $\alpha a \star b = a \star \alpha b = \alpha (a \star b)$
 - identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...]

 $a \star e = a$

- Conceptually no distinction between filter and signal
- Usefulness of associativity
 - often apply several filters one after another: $(((a * b_1) * b_2) * b_3))$
 - this is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$

Gaussian and convolution

- Removes "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian



– Convolving twice with Gaussian kernel of width σ = convolving once with kernel of width $\sigma\sqrt{2}$

Image half-sizing

This image is too big to fit on the screen. How can we reduce it?

How to generate a halfsized version?

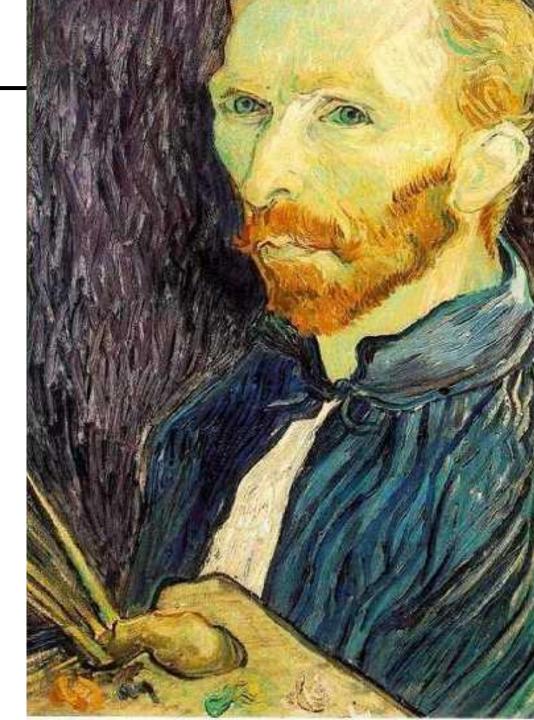
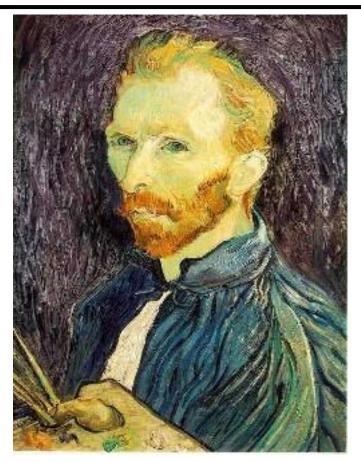


Image sub-sampling

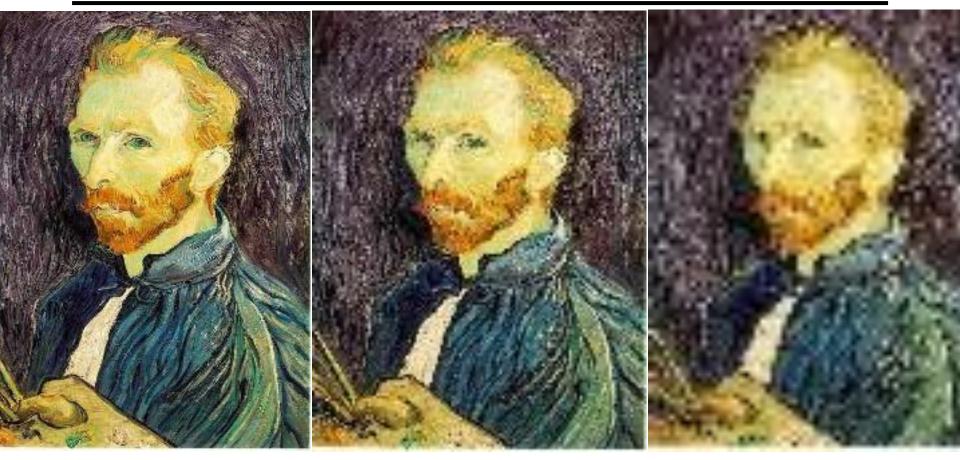


1/8

1/4

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

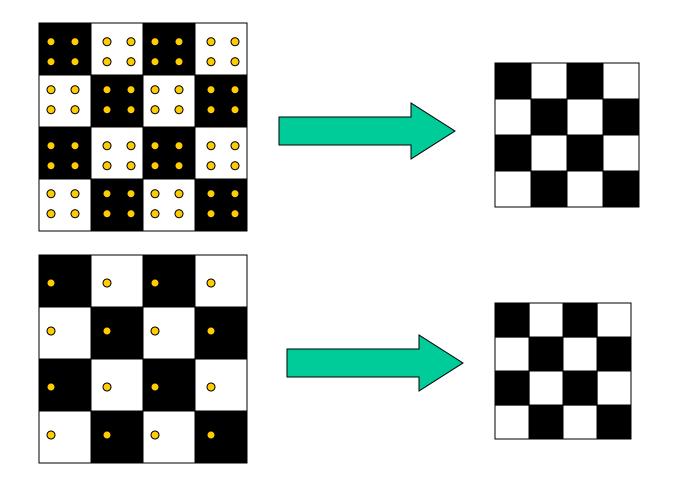
Image sub-sampling



1/21/4 (2x zoom)1/8 (4x zoom)Aliasing! What do we do?

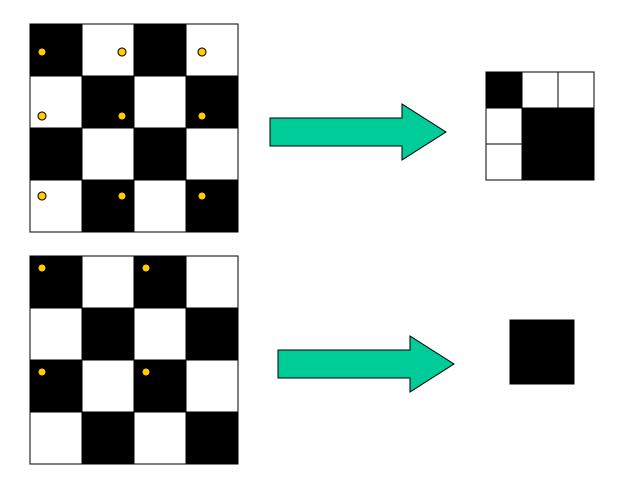
Slide by Steve Seitz

Sampling an image



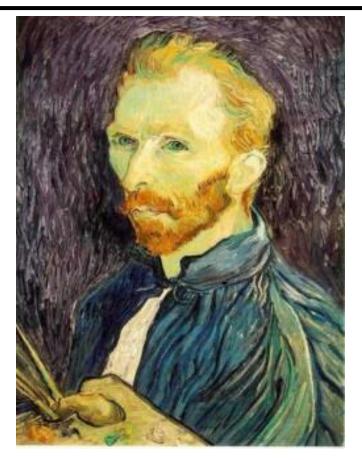
Examples of GOOD sampling

Undersampling



Examples of BAD sampling -> Aliasing

Gaussian (lowpass) pre-filtering



G 1/8

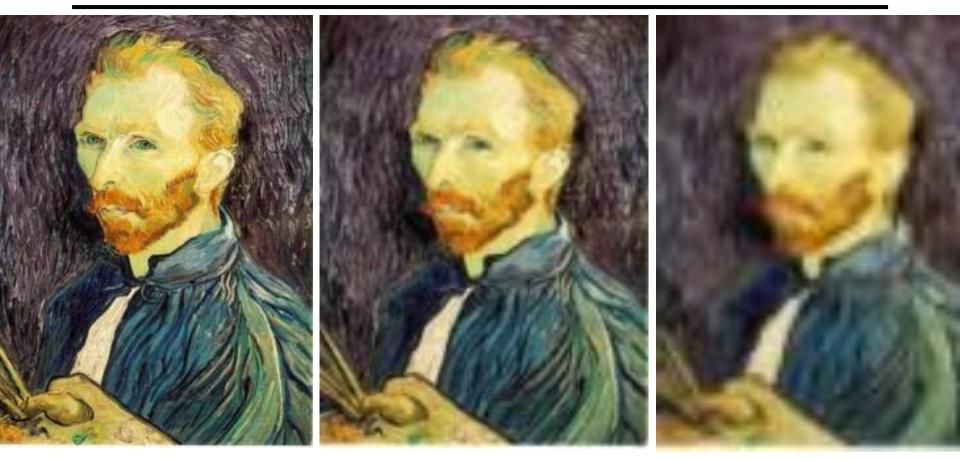
G 1/4

Gaussian 1/2

Solution: filter the image, then subsample

• Filter size should double for each ½ size reduction. Why?

Subsampling with Gaussian pre-filtering



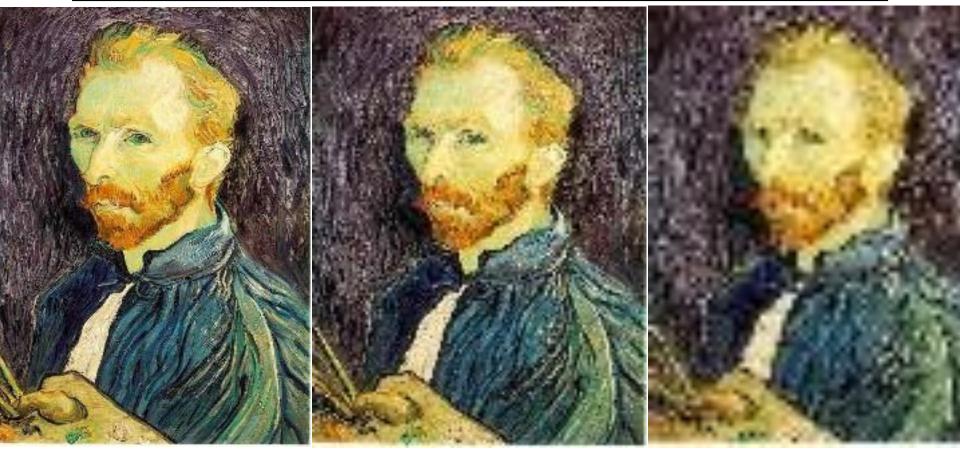
Gaussian 1/2

G 1/4

G 1/8

Slide by Steve Seitz

Compare with...



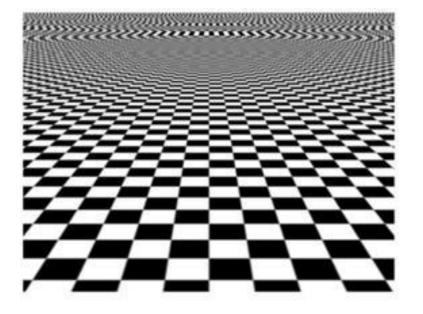
1/2

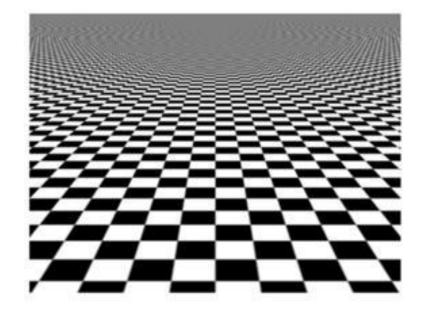
1/4 (2x zoom)

1/8 (4x zoom)

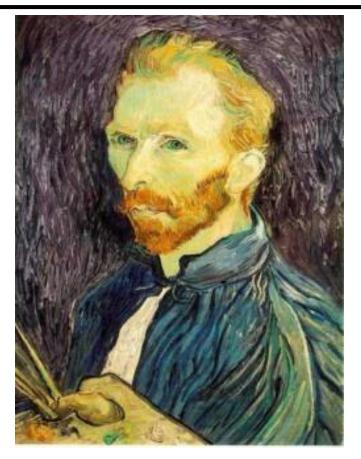
Slide by Steve Seitz

More Gaussian pre-filtering





Iterative Gaussian (lowpass) pre-filtering



G 1/8

G 1/4

Gaussian 1/2

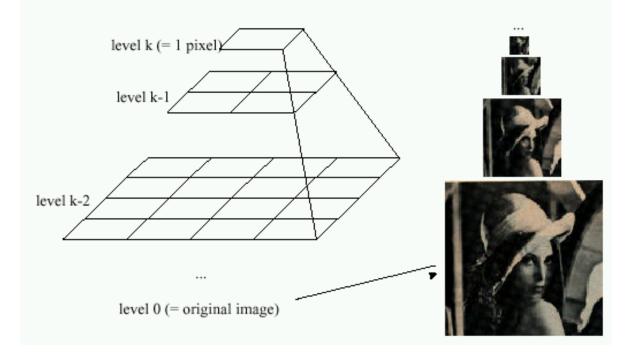
filter the image, then subsample

- Filter size should double for each ½ size reduction. Why?
- How can we speed this up?

Slide by Steve Seitz

Image Pyramids

Idea: Represent NxN image as a "pyramid" of 1x1, 2x2, 4x4,..., 2^kx2^k images (assuming N=2^k)



Known as a Gaussian Pyramid [Burt and Adelson, 1983]

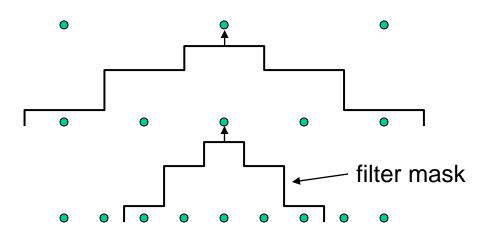
- In computer graphics, a *mip map* [Williams, 1983]
- A precursor to wavelet transform

512 256 128 64 32 16 8

A bar in the big images is a hair on the zebra's nose; in smaller images, a stripe; in the smallest, the animal's nose

Figure from David Forsyth

Gaussian pyramid construction



Repeat

- Filter
- Subsample

Until minimum resolution reached

• can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only 4/3 the size of the original image!

Slide by Steve Seitz

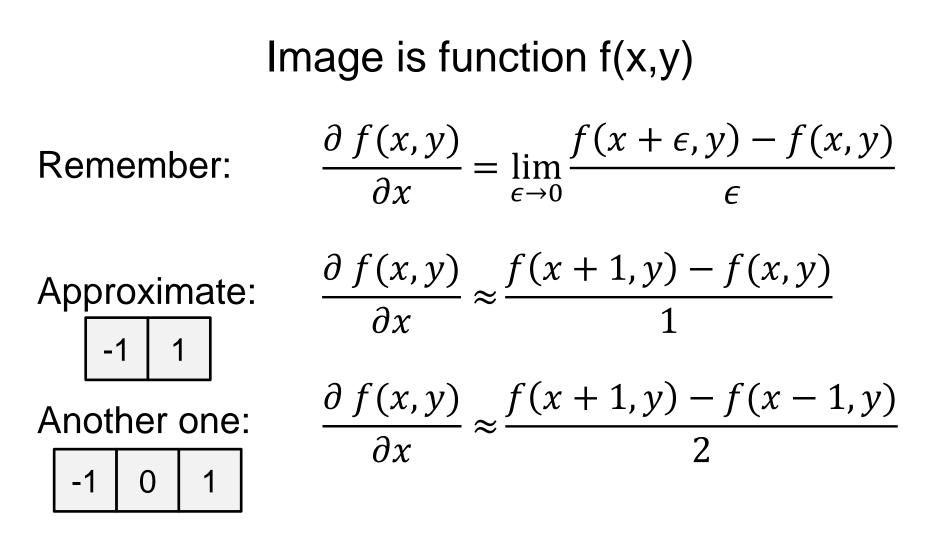
What are they good for?

Improve Search

- Search over translations
 - Classic coarse-to-fine strategy
 - Project 1!
- Search over scale
 - Template matching
 - E.g. find a face at different scales

Taking derivative by convolution

Partial derivatives with convolution



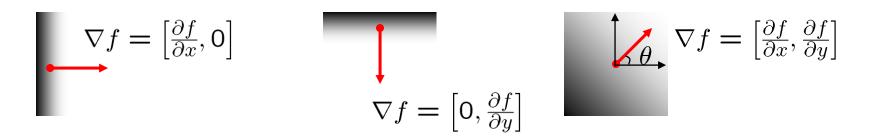
Partial derivatives of an image

 $\frac{\partial f(x, y)}{\partial x}$ $\frac{\partial f(x, y)}{\partial y}$ 1 -1 1 or -1 1 _1

Which shows changes with respect to x?

Image gradient

The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$



- The gradient points in the direction of most rapid increase in intensity
 - How does this direction relate to the direction of the edge?

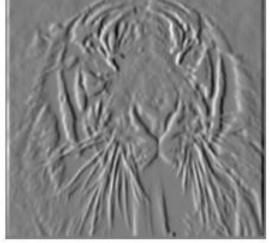
The *edge strength* is given by the gradient magnitude

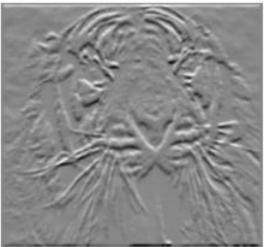
$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The gradient direction is given by $\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$

Source: Steve Seitz

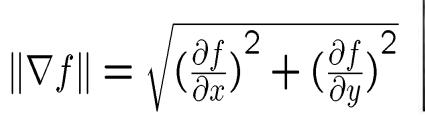
Image Gradient



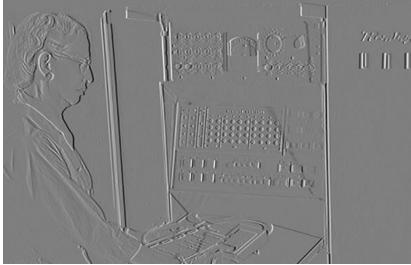


 $\partial f(x, y)$ ∂x

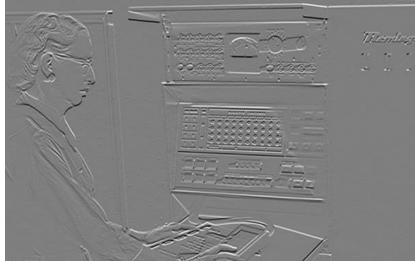
 $\partial f(x,y)$ ∂y



Partial Derivatives



 $\partial f(x, y)$ ∂x



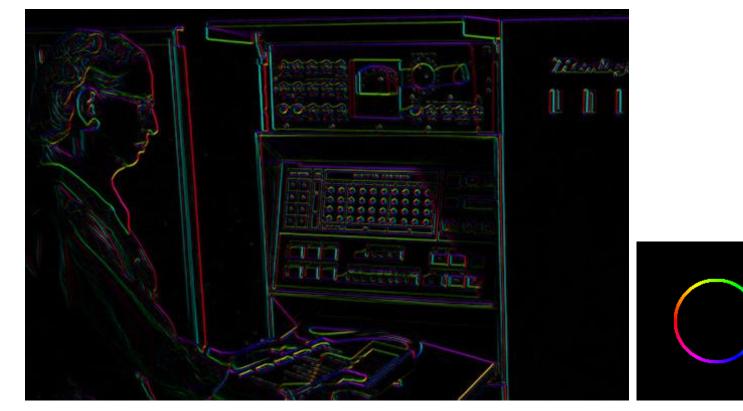
 $\frac{\partial f(x,y)}{\partial x}$ ∂y

Gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

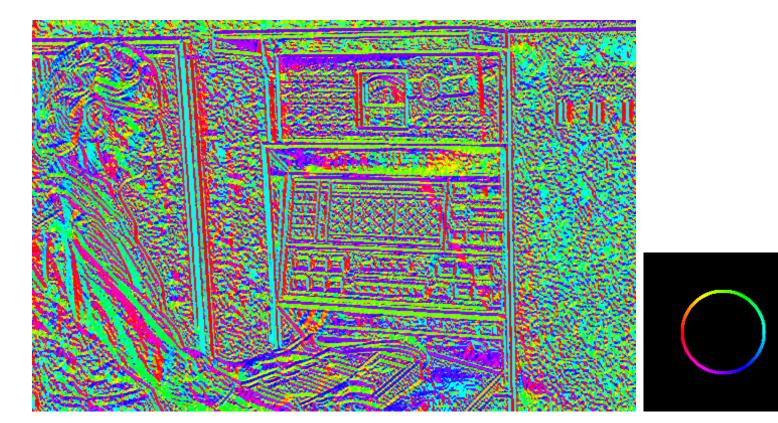
Gradient Orientation

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$$
 atan2(dy,dx)



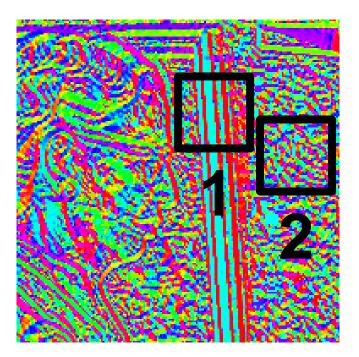
I'm making the lightness equal to gradient magnitude

 $\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$



Now I'm showing all the gradients

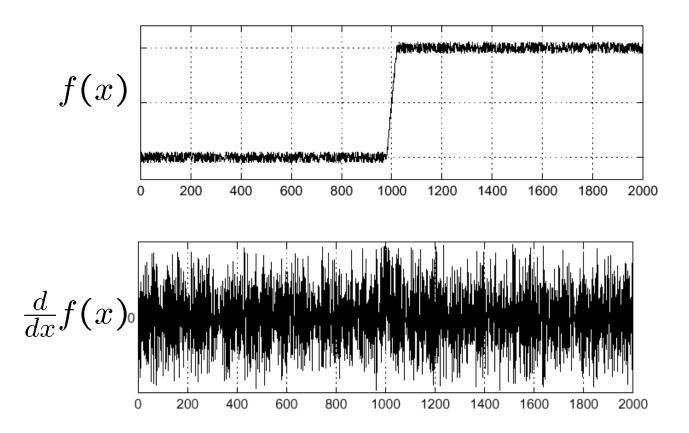
Why is there structure at 1 and not at 2?



Effects of noise

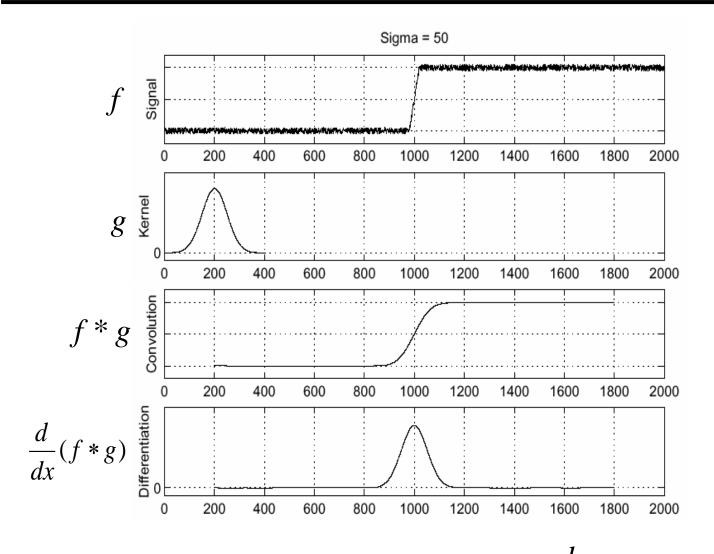
Consider a single row or column of the image

• Plotting intensity as a function of position gives a signal



Where is the edge?

Solution: smooth first



• To find edges, look for peaks in $\frac{d}{dx}(f * g)$

Source: S. Seitz

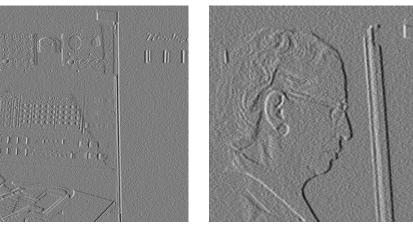
Noise in 2D

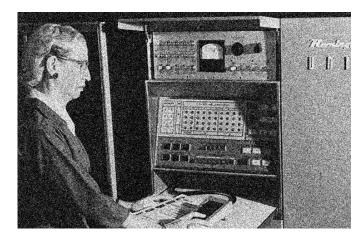
Noisy Input

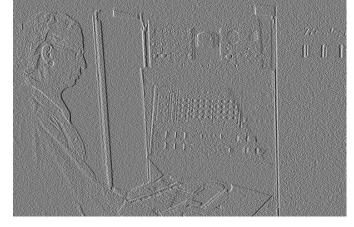
Mendagi U II I STORE BUILD

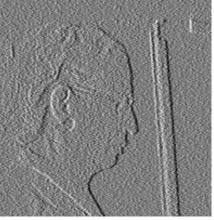
Ix via [-1,01]

Zoom

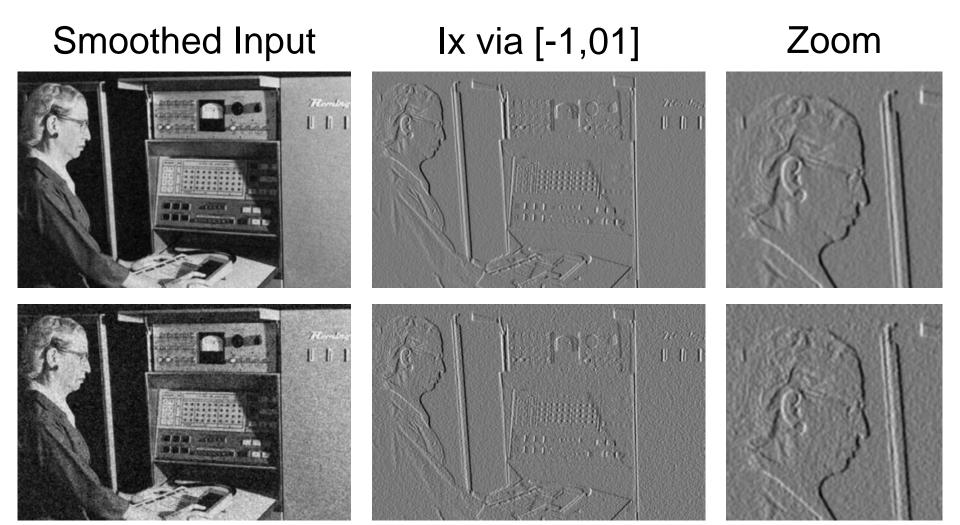








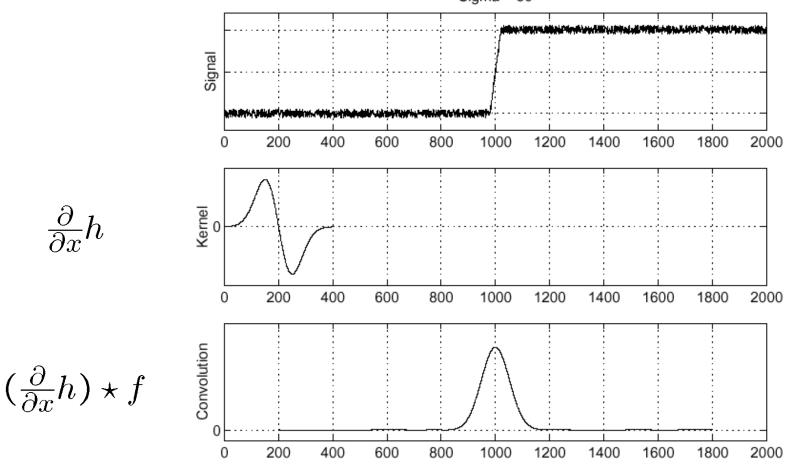
Noise + Smoothing



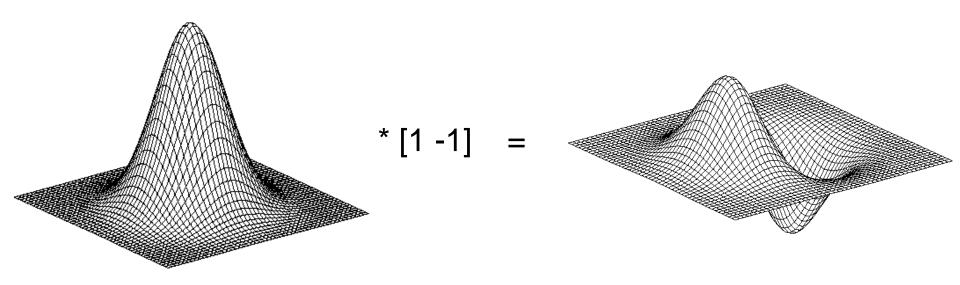
Derivative theorem of convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

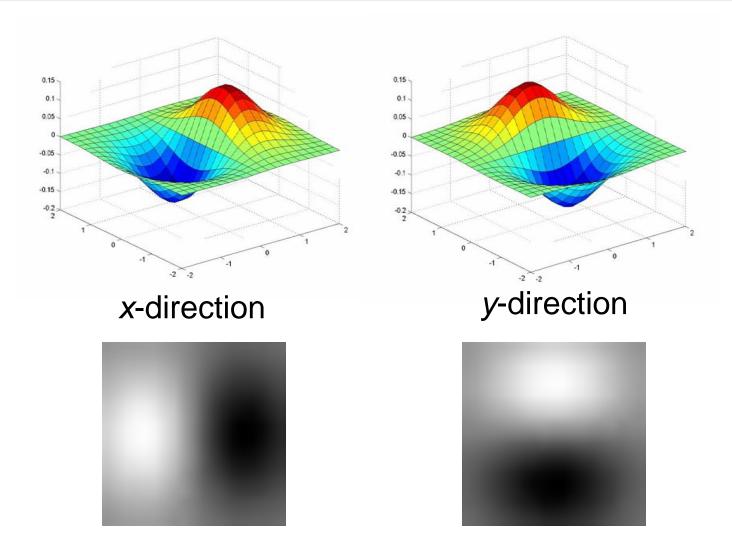
This saves us one operation:



Derivative of Gaussian filter

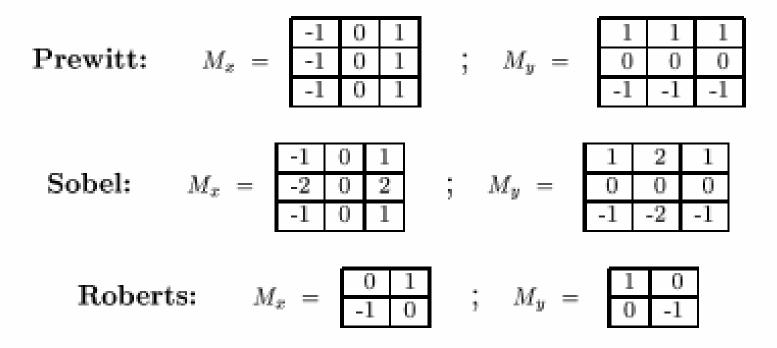


Derivative of Gaussian filter



Which one finds horizontal/vertical edges?

Compare to classic derivative filters

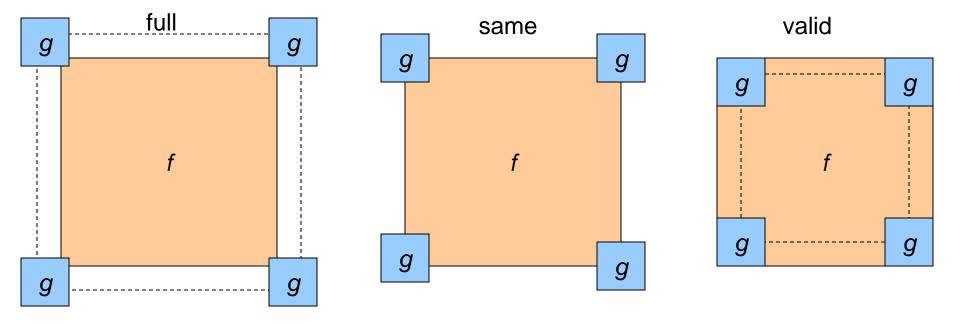


Filtering: practical matters

What is the size of the output?

(MATLAB) filter2(g, f, shape) or conv2(g,f,shape)

- shape = 'full': output size is sum of sizes of f and g
- shape = 'same': output size is same as f
- *shape* = 'valid': output size is difference of sizes of f and g



Practical matters

What about near the edge?

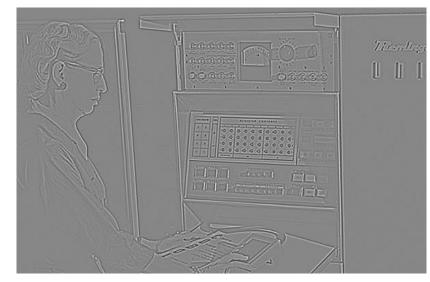
- the filter window falls off the edge of the image
- need to extrapolate
- methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Low Pass vs. High Pass filtering

Image

Smoothed

Details



+α

Details



+α

Details

+α

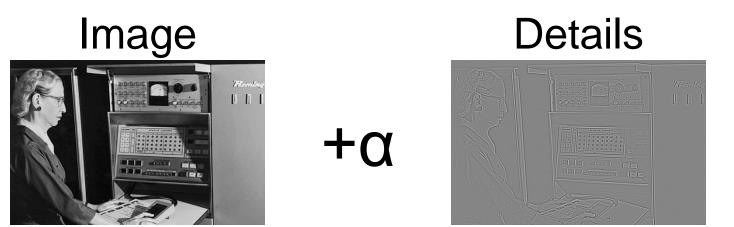
Details

"Sharpened" α =2

+α

Details

Filtering – Extreme Sharpening



Unsharp mask filter

