
Automatic Image Alignment + Optical Flow

with a lot of slides stolen from

Steve Seitz and Rick Szeliski

© Mike Nese

CS194: Intro to Comp. Vision and Comp. Photo

Alexei Efros, UC Berkeley, Fall 2021

Feature descriptors

We know how to detect points

Next question: How to match them?

?

Point descriptor should be:

1. Invariant 2. Distinctive

Feature Descriptor – MOPS

Multi-Scale Oriented Patches

Interest points

• Multi-scale Harris corners

• Orientation from blurred gradient

• Geometrically invariant to rotation

Descriptor vector

• Bias/gain normalized sampling of local patch (8x8)

• Photometrically invariant to affine changes in intensity

[Brown, Szeliski, Winder, CVPR’2005]

Detect Features, setup Frame

Orientation = blurred gradient

Rotation Invariant Frame

• Scale-space position (x, y, s) + orientation ()

Detections at multiple scales

MOPS descriptor vector

8x8 oriented patch

• Sampled at 5 x scale

Bias/gain normalisation: I’ = (I –)/

8 pixels

Automatic Feature Matching

Feature matching

?

Feature matching

• Pick best match!

• For every patch in image 1, find the most similar patch (e.g.

by SSD).

• Called “nearest neighbor” in machine learning

• Can do various speed ups:

• Hashing

– compute a short descriptor from each feature vector, or hash

longer descriptors (randomly)

• Fast Nearest neighbor techniques

– kd-trees and their variants

• Clustering / Vector quantization

– So called “visual words”

What about outliers?

?

Feature-space outlier rejection

Let’s not match all features, but only these that have

“similar enough” matches?

How can we do it?

• SSD(patch1,patch2) < threshold

• How to set threshold?

Feature-space outlier rejection: symmetry

Let’s not match all features, but only these that have

“similar enough” matches?

How can we do it?

• Symmetry: x’s NN is y, and y’s NN is x

Feature-space outlier rejection: Lowe’s trick

A better way [Lowe, 1999]:

• 1-NN: SSD of the closest match

• 2-NN: SSD of the second-closest match

• Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN

• That is, is our best match so much better than the rest?

Feature-space outliner rejection

Can we now compute H from the blue points?

• No! Still too many outliers…

• What can we do?

Matching features

What do we do about the “bad” matches?

RAndom SAmple Consensus

Select one match, count inliers

RAndom SAmple Consensus

Select one match, count inliers

Least squares fit

Find “average” translation vector

RANSAC for estimating homography

RANSAC loop:

1. Select four feature pairs (at random)

2. Compute homography H (exact)

3. Compute inliers where dist(pi’, H pi) < ε

4. Keep largest set of inliers

5. Re-compute least-squares H estimate on all of the

inliers

RANSAC

Example: Recognising Panoramas

M. Brown and D. Lowe,

University of British Columbia

Why “Recognising Panoramas”?

Why “Recognising Panoramas”?

1D Rotations ()

• Ordering matching images

Why “Recognising Panoramas”?

1D Rotations ()

• Ordering matching images

Why “Recognising Panoramas”?

1D Rotations ()

• Ordering matching images

Why “Recognising Panoramas”?

• 2D Rotations (, f)

– Ordering matching images

1D Rotations ()

• Ordering matching images

Why “Recognising Panoramas”?

1D Rotations ()

• Ordering matching images

• 2D Rotations (, f)

– Ordering matching images

Why “Recognising Panoramas”?

1D Rotations ()

• Ordering matching images

• 2D Rotations (, f)

– Ordering matching images

Why “Recognising Panoramas”?

Overview

Feature Matching

Image Matching

Bundle Adjustment

Multi-band Blending

Results

Conclusions

RANSAC for Homography

RANSAC for Homography

RANSAC for Homography

Probabilistic model for verification

Finding the panoramas

Finding the panoramas

Finding the panoramas

Finding the panoramas

Parameterise each camera by rotation and focal length

This gives pairwise homographies

Homography for Rotation

Bundle Adjustment

New images initialised with rotation, focal length of best

matching image

Bundle Adjustment

New images initialised with rotation, focal length of best

matching image

Multi-band Blending

Burt & Adelson 1983

• Blend frequency bands over range l

Results

Limitations of Alignment

We need to know the global transform

(e.g. affine, homography, etc)

Optical flow

Will start by estimating motion of each pixel separately

Then will consider motion of entire image

Why estimate motion?

Lots of uses

• Track object behavior

• Correct for camera jitter (stabilization)

• Align images (even if no global transform)

• 3D shape reconstruction

• Special effects

Problem definition: optical flow

How to estimate pixel motion from image H to image I?

• Solve pixel correspondence problem

– given a pixel in H, look for nearby pixels of the same color in I

Key assumptions

• color constancy: a point in H looks the same in I

– For grayscale images, this is brightness constancy

• small motion: points do not move very far

This is called the optical flow problem

Optical flow constraints (grayscale images)

Let’s look at these constraints more closely

• brightness constancy: Q: what’s the equation?

• small motion: (u and v are less than 1 pixel)

– suppose we take the Taylor series expansion of I:

Optical flow equation

Combining these two equations

In the limit as u and v go to zero, this becomes exact

Optical flow equation

Q: how many unknowns and equations per pixel?

Intuitively, what does this constraint mean?

• The component of the flow in the gradient direction is determined

• The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion

http://www.sandlotscience.com/Ambiguous/barberpole.htm

http://www.sandlotscience.com/Ambiguous/barberpole.htm

Aperture problem

Aperture problem

Solving the aperture problem

How to get more equations for a pixel?

• Basic idea: impose additional constraints

– most common is to assume that the flow field is smooth locally

– one method: pretend the pixel’s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25 equations per pixel!

RGB version

How to get more equations for a pixel?

• Basic idea: impose additional constraints

– most common is to assume that the flow field is smooth locally

– one method: pretend the pixel’s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25*3 equations per pixel!

Lukas-Kanade flow

Prob: we have more equations than unknowns

• The summations are over all pixels in the K x K window

• This technique was first proposed by Lukas & Kanade (1981)

Solution: solve least squares problem

• minimum least squares solution given by solution (in d) of:

Conditions for solvability

• Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
• ATA should be invertible

• ATA should not be too small due to noise

– eigenvalues l1 and l2 of ATA should not be too small

• ATA should be well-conditioned

– l1/ l2 should not be too large (l1 = larger eigenvalue)

ATA is solvable when there is no aperture problem

Local Patch Analysis

Edge

– large gradients, all the same

– large l1, small l2

Low texture region

– gradients have small magnitude

– small l1, small l2

High textured region

– gradients are different, large magnitudes

– large l1, large l2

Observation

This is a two image problem BUT
• Can measure sensitivity by just looking at one of the images!

• This tells us which pixels are easy to track, which are hard

– very useful later on when we do feature tracking...

Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?

• Suppose ATA is easily invertible

• Suppose there is not much noise in the image

When our assumptions are violated

• Brightness constancy is not satisfied

• The motion is not small

• A point does not move like its neighbors

– window size is too large

– what is the ideal window size?

Iterative Refinement

Iterative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade equations

2. Warp H towards I using the estimated flow field

- use image warping techniques

3. Repeat until convergence

Revisiting the small motion assumption

Is this motion small enough?

• Probably not—it’s much larger than one pixel (2nd order terms dominate)

• How might we solve this problem?

Reduce the resolution!

image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation

image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.

Beyond Translation

So far, our patch can only translate in (u,v)

What about other motion models?

• rotation, affine, perspective

Same thing but need to add an appropriate Jacobian (see

Table 2 in Szeliski handout):

−=

=

i

t

i

I TTT

TTT

I)(JbA

JI)I(JAA

