Action Recognition

CS 280, Spring 2015

by Georgia Gkioxari

Examples of actions

- Movement and posture change e.g. run, walk, crawl, jump, hop, swim, dance, sit
- Object manipulation

e.g. pick, carry, hold, push, pull, touch, drive, bike, play musical instrument

• Conversational gesture

e.g. point ...

• Sign Language

Key cues for action recognition

- Morpho-kinetics of action shape and movement of the body
- Identity of objects
- Activity context scene or other people performing actions

Action recognition

- Static action recognition from 2D images
- Video action recognition from videos

Static Action Recognition - Datasets

PASCAL VOC Action

- 10 actions [jumping, phoning, riding bike...]
- 12000 instances for train & test

Static Action Recognition - Datasets

MPII Human Dataset

- 410 actions
- 40000 instances for train & test

CNN for action recognition:

- → Input: Region containing the actor
- → Output: One of A action labels
- → Loss during CNN training: log loss of softmax probabilities

mean AP (%) 8-layer CNN		16-layer CNN	
CNN	68.2	77.8	

Observations:

- Some regions in the image matter more than others
- Max pooling layers hide important cues from subsequent layers

(a) Given an instance hypothesis, we detect parts (b) The instance and its parts are fed into our classification engine

[1] G. Gkioxari, R. Girshick and J. Malik, Actions and Attributes from Wholes and Parts, arXiv 2014

Part detectors^[1]

Definition: Parts should capture human body parts of distinct pose and viewpoint

Collection: Given locations of landmarks on the human body (e.g. nose, shoulder) we can obtain examples of pose clusters

Part detectors^[1]

Learning: Train models (e.g. SVM) for each pose cluster on features (e.g. pool5)

mean AP (%)	8-layer CNN	16-layer CNN	
CNN	68.2	77.8	
Whole & Parts CNN ^[1]	71.5	80.4	

- **Object Context**: The objects surrounding the actor, e.g. horse, bike
- Action Context: Actions other people in the image perform, e.g. running in a marathon
- **Scene**: The scene the action is taking place, e.g. swimming pool

mean AP (%)	8-layer CNN	16-layer CNN	
CNN	68.2	77.8	
Whole & Parts CNN ^[1]	71.5	80.4	
Whole & Parts CNN ^[1] with context rescoring	73.5	82.6	

Attribute Recognition

(a) Given an instance hypothesis, we detect parts (b) The instance and its parts are fed into our classification engine

mean AP (%)	8-layer CNN	16-layer CNN	
CNN	79.1	88.4	
Whole & Parts CNN ^[1]	86.0	89.5	

Video action recognition

Freestyle swimming

Sailing

Video action recognition - Datasets

UCF 101

HMDB

-			1			
brush hair	cartwheel	catch	chew	clap	climb	climb stairs
						N X X
dive	draw sword	dribble	drink	eat	fall floor	fencing
flic	rolf	hand	hit	hue	iump	kick
flac	8011	stand		1.00	Janup	nion
Acie	APT -					
kick	kiss	laugh	pick	pour	pullup	punch
bush	pushup	ride bike	ride horse	run	shake hands	shoot ball
K-						
hoot	shoot	sit	situp	smile	smoke	somersau
	Bau					19
tand	swing	sword	sword	talk	throw	turn
	baseball	exercise				

wave

Video action recognition - Datasets

UCF 101

- 101 actions
- 13302 videos

1M sports dataset

- 487 actions
- 1,133,158 videos

HMDB

- 51 actions
- 6849 videos

Video action recognition

- Motion cues play important role in videos
- We capture motion with optical flow

Optical flow between frames no.8 - no.9

Video action recognition - approach^[1]

Accuracy (%)	UCF 101	HMDB
Dense Trajectories	85.9	57.2

[1] Wang et al, Action Recognition by Dense Trajectories, CVPR 2011

Video action recognition - approach^[2]

[2] Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014

Video action recognition - approach^[2]

Accuracy (%)	UCF 101	HMDB	
Dense Trajectories	85.9	57.2	
Spatial stream CNN	73.0	40.5	
Temporal stream CNN	83.7	54.6	
Two-stream CNN	88.0	59.4	

[2] Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014

Video action recognition - problems

• Scene bias

most videos can be classified correctly solely based on the scene

• Multiple actions

the tasks assigns one label to the whole video, what if more actions are being performed?

Localization

the location of the predicted action is not specified

- Task: Given a video, localize the action(s) being performed in the video
- Method
 - Start from regions (prune based on motion saliency)
 - Classify each region based shape and motion cues (spatial- & motion- CNNs and fusion)
 - Link detections across frames (dynamic programming)

Action classification can be benefited from analyzing an action wrt the actor

Accuracy (%)	Wang et al. ^[1]	Two-stream CNN ^[2]	Action Tubes ^[3]
J-HMDB	56.6	56.5	62.5

Questions?

Heider & Simmel 1944