
CS 61A Structure and Interpretation of Computer Programs
Summer 2016 Final

INSTRUCTIONS

• You have 2 hours and 50 minutes to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except two 8.5” × 11” cheat sheets
of your own creation.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

Instructional account (cs61a-_)

BearFacts email (_@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)

http://berkeley.edu

2

1. (6 points) Does Jack Like Jackfruits?

For each of the statements below, write the output displayed by the interactive Python interpreter when the
statement is executed. The output may have multiple lines. No answer requires more than three lines.
If executing a statement results in an error, write ‘Error’, but include all lines displayed before the error occurs.
The first two have been provided as examples.

Assume that you have started python3 and executed the following statements:

class Fruit:

ripe = False

def __init__(self , taste , size):

self.taste = taste

self.size = size

self.ripe = True

def eat(self , eater):

print(eater , ‘eats the’, self.name)

if not self.ripe:

print(‘But it is not ripe!’)

else:

print(‘What a’, self.taste , ‘and’, self.size , ‘fruit!’)

class Tomato(Fruit):

name = ‘tomato ’

def eat(self , eater):

print(‘Adding some sugar first ’)

self.taste = ‘sweet’

Fruit.eat(self , eater)

mystery = Fruit(‘tart’, ‘small’)

tommy = Tomato(‘plain ’, ‘normal ’)

>>> mystery.taste >>> Tomato.ripe

‘tart’

>>> mystery.name >>> Tomato.eat(mystery , ‘Marvin ’)

Error

>>> mystery.ripe >>> Fruit.eat(tommy , ‘Brian’)

>>> tommy.eat(‘Brian’) >>> tommy.name = ‘sweet tomato ’

>>> Fruit.eat = lambda self , own: print(

... self.name , ‘is too sweet!’)

>>> tommy.eat(‘Marvin ’)

Name: 3

2. (12 points) Marsalists Have Mutant Powers

(a) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program is
finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names and parent annotations to all frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

Globaldef iter(iterable):
 def iterator(msg):
 nonlocal iterable
 if msg == 'next':
 next = iterable[0]
 iterable = iterable[1:]
 return next
 elif msg == 'stop':
 raise StopIteration
 return iterator

def next(iterator):
 return iterator('next')

def stop(iterator):
 iterator('stop')

lst = [1, 2, 3]
iterator = iter(lst)
elem = next(iterator)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

next

stop

lst

iter func iter(iterable) [parent=Global]

f1: _________ [parent=________]

f2: _________ [parent=________]

Return Value

f3: _________ [parent=________]

Return Value

f4: _________ [parent=________]

Return Value

func next(iterator) [parent=Global]

func stop(iterator) [parent=Global]

Return Value

4

(b) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program is
finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names and parent annotations to all frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

Globaldef filter(pred, lst):
 i = 0
 while i < len(lst):
 elem = lst[i]
 if not pred(lst[i]):
 elem = 'X'
 i += 1
 j = 0
 while j < len(lst):
 if lst[j] == 'X':
 lst.pop(j)
 else:
 j += 1

filter(lambda x: x < 2, [1, 2, 3])

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

filter func filter(pred, lst) [parent=Global]

f1: _________ [parent=________]

f2: _________ [parent=________]

Return Value

f3: _________ [parent=________]

Return Value

f4: _________ [parent=________]

Return Value

Return Value

Name: 5

3. (8 points) The Pair of Pair-ic and Pair-ome

(a) (6 pt) Define the function combine pairs that takes a two-argument function func and returns a new function
that takes in a list lst. When called, the new function should combine the elements in lst two by two using
func, and return a new list of the results. If the length of lst is odd, the last element should be included in
the return value without being combined with anything. See the doctests for details.

You may only use the lines provided. You may not need to fill all the lines.

def combine_pairs(func):

"""

>>> from operator import add

>>> add_pairs = combine_pairs(add)

>>> add_pairs ([1, 2, 3, 4])

[3, 7]

>>> add_pairs ([1, 2, 3, 4, 5])

[3, 7, 5]

>>> group_pairs = combine_pairs(lambda x, y: [x, y])

>>> group_pairs ([‘hi’, ‘there ’, ‘bye ’, ‘now ’])

[[‘hi’, ‘there ’], [‘bye ’, ‘now ’]]

"""

def pairer(lst):

result = ___

for i in ___

try:

__

except IndexError:

__

return ___

return ___

(b) (2 pt) Assuming the function combine pairs works correctly, fill in the following line of code to correctly
define the function sum, which takes in a non-empty list of numbers and returns the sum of the numbers. Use
only one line of code. If you need more space, you can continue your line of code on the second
blank. The add function has been imported for you; you may find it to be useful.

Hint: You may need the ternary operator <expr1> if <cond> else <expr2>.

>>> from operator import add

>>> sum = __

__

>>> sum([1, 2, 3])

6

>>> sum([2, 0, 1, 6])

9

6

4. (9 points) Caught Ya!

Implement the function catch up, which takes in two linked lists of integers lnk1 and lnk2 and mutates the
linked list with the lower sum by repeatedly inserting 1 at the end until the sums are equal. See the doctests
for details. You may assume that the two linked lists that are passed in are non-empty and have
the same length. The Link class is provided for your reference.

You may only use the lines provided. You may not need to fill all the lines. You may not use
methods that are not implemented in the Link class below.

Hint: You may need the ternary operator <expr1> if <cond> else <expr2>.

def catch_up(lnk1 , lnk2):

"""

>>> odds = Link(1, Link(3, Link(5, Link (7))))

>>> evens = Link(2, Link(4, Link(6, Link (8))))

>>> catch_up(odds , evens)

>>> print(odds) # odds is mutated

<1 3 5 7 1 1 1 1>

>>> print(evens)

<2 4 6 8>

"""

def catcher(lnk1 , lnk2 , sum1 , sum2):

sum1 = ___

sum2 = ___

if ___

lower = __

for __

__

__

__

else:

catcher(___)

catcher(___)

class Link:

empty = ()

def __init__(self , first , rest=empty):

self.first , self.rest = first , rest

def __str__(self):

string = ‘<’

while self.rest is not Link.empty:

string += str(self.first) + ‘ ’

self = self.rest

return string + str(self.first) + ‘>’

Name: 7

5. (9 points) The Tree-o of Tam-tree, Tree-tas, and Tree-il

(a) (3 pt) Define the function min leaf depth, which takes in a tree t and returns the minimum depth of any of
the leaves in t. Recall that the depth of a node is defined as how far away that node is from the root. See the
doctests for details. The Tree class is provided for your reference.

You may only use the lines provided. You may not need to fill all the lines. You may not use
methods that are not implemented in the Tree class below.

Hint: You may find the built-in min function useful.

def min_leaf_depth(t):

"""

>>> t1 = Tree (2)

>>> min_leaf_depth(t1)

0

>>> t2 = Tree(2, [Tree(0), Tree(1), Tree (6)])

>>> min_leaf_depth(t2)

1

>>> t3 = Tree(2, [Tree(0), t2])

>>> min_leaf_depth(t3)

1

>>> t4 = Tree(2, [t2 , t3])

>>> min_leaf_depth(t4)

2

"""

if t.is_leaf ():

__

else:

__

__

class Tree:

def __init__(self , entry , children =[]):

for c in children:

assert isinstance(c, Tree)

self.entry = entry

self.children = children

def is_leaf(self):

return not self.children

8

(b) (6 pt) Define the function find path, which takes in a binary search tree bst and a number n and returns a
list representing the path through bst starting from the root and ending at n. You may assume that n exists
in bst exactly once. See the doctests for details. The BST class is provided for your reference.

You may only use the lines provided. You may not need to fill all the lines. You may not use
methods that are not implemented in the BST class below.

def find_path(bst , n):

"""

>>> bst = BST(4, BST(2, BST(1)), BST (5))

>>> find_path(bst , 1)

[4, 2, 1]

>>> find_path(bst , 2)

[4, 2]

"""

if ___

__

elif ___

__

else:

__

class BST:

empty = ()

def __init__(self , entry , left=empty , right=empty):

assert left is BST.empty or isinstance(left , BST)

assert right is BST.empty or isinstance(right , BST)

self.entry = entry

self.left , self.right = left , right

if left is not BST.empty:

assert left.max <= entry

if right is not BST.empty:

assert entry < right.min

@property

def max(self): # Returns the maximum element in the tree

if self.right is BST.empty:

return self.entry

return self.right.max

@property

def min(self): # Returns the minimum element in the tree

if self.left is BST.empty:

return self.entry

return self.left.min

Name: 9

6. (11 points) Dan-scheme with the Cars

(a) (3 pt) Define the procedure digit-prod, which takes in a non-negative integer n and returns the product of
the digits of n. See the example usage for more details.

You may only use the lines provided. You may not need to fill all the lines.

Hint: The built-in quotient and modulo procedures return the quotient and remainder, respectively, of one
number divided by another.

(define (digit -prod n)

__

__

___)

scm > (quotient 5 3)

1

scm > (modulo 5 3)

2

scm > (digit -prod 12345)

120

scm > (digit -prod 200)

0

scm > (digit -prod 2222)

16

(b) (5 pt) Define the procedure merge, which takes in two sorted lists of numbers lst1 and lst2 and returns a
new list that contains all the elements in the two lists in sorted order. See the example usage for more details.

You may only use the lines provided. You may not need to fill all the lines.

Hint: The built-in append procedure may be useful.

(define (merge lst1 lst2)

(cond __

__

__

__))

scm > (merge ‘(1 3 5) ‘(2 4 6))

(1 2 3 4 5 6)

scm > (merge ‘() ‘(2 4 6))

(2 4 6)

scm > (merge ‘(5 7) ‘(2 4 6))

(2 4 5 6 7)

10

(c) (3 pt) For each of the following Scheme expressions, circle the correct number of calls that would be made to
scheme eval and scheme apply when evaluating the expression in our Scheme interpreter (Project 4). Assume
you are not using the tail-recursive scheme optimized eval.

(- (* 6 11) 2 2 2)

Number of calls to scheme eval: 1 4 7 9 12

Number of calls to scheme apply: 0 1 2 3 4

(if (+ 0 (- 1 1)) (+ 4 5) 4)

Number of calls to scheme eval: 1 4 7 9 12

Number of calls to scheme apply: 0 1 2 3 4

((lambda (x) (* x x)) 57)

Number of calls to scheme eval: 1 4 7 9 12

Number of calls to scheme apply: 0 1 2 3 4

Name: 11

7. (8 points) Let to Sam-da

In the Scheme project, you wrote a procedure let-to-lambda that took in a Scheme expression as a list and
transformed all let expressions within it into equivalent lambda expressions. We will now do the same thing
in Logic. Define the incomplete facts below to complete the let-to-lambda relation, which relates a Scheme
expression to the equivalent expression with no let expressions. See the example usage on the next page for
more details.

Symbolic programming is very powerful in Logic. Our let-to-lambda will work the exact same way as the
let-to-lambda procedure in Scheme, with the tiny exception that we cannot use let as a variable name.

You may only use the lines provided. You may not need to fill all the lines.

Facts for the equal, is-pair, and zip relations have been defined for you, and you may find these relations
useful. See the example usage for more details. You may not assume that any other relations have
been defined.

(fact (equal ?x ?x))

(fact (is -pair (?car . ?cdr)))

(fact (zip () () ()))

(fact (zip (?f1 . ?r1) (?f2 . ?r2) ((?f1 ?f2) . ?r-zip))

(zip ?r1 ?r2 ?r-zip))

logic > (query (is -pair (1 2 3)))

Success!

logic > (query (is -pair 1))

Failed.

logic > (query (zip ?lst1 ?lst2 ((a 1) (b 2))))

Success!

lst1: (a b) lst2: (1 2)

; atoms (expressions that are not pairs) do not need conversion

(fact (let -to -lambda ?x ?x)

___)

; quoted expressions , even if they contain let , should not be converted

(fact (let -to -lambda (quote ?expr) (quote ?expr)))

; lets in the body of lambda expressions should be converted

(fact (let -to -lambda (lambda ?formals . ?body) (lambda ?formals . ?body -conv))

(let -to -lambda ___))

12

; lets in the body of define expressions should be converted

(fact (let -to -lambda (define ?formals . ?body) (define ?formals . ?body -conv))

(let -to-lambda ?body ?body -conv))

; lets like (let ((a 1)) a) should be converted into ((lambda (a) a) 1)

; remember that the bodies of lets can contain more lets

; remember that the arguments in let bindings can also contain more lets

(fact (let -to -lambda __)

(zip __)

(let -to-lambda __)

(let -to-lambda ___))

; check and convert pairs not in one of the above forms

(fact (let -to -lambda (?car1 . ?cdr1) (?car2 . ?cdr2))

(not (equal ?car1 quote))

(not (equal ?car1 lambda))

(not (equal ?car1 define))

(not (equal ?car1 let))

(let -to-lambda ?car1 ?car2)

(let -to-lambda ?cdr1 ?cdr2))

logic > (query (let -to -lambda (+ 1 2) ?conv))

Success!

conv: (+ 1 2)

logic > (query (let -to -lambda (let ((a 1) (b 2)) (+ a b)) ?conv))

Success!

conv: ((lambda (a b) (+ a b)) 1 2)

logic > (query (let -to -lambda (let ((a (let ((a 2)) a)) (b 2)) (+ a b)) ?conv))

Success!

conv: ((lambda (a b) (+ a b)) ((lambda (a) a) 2) 2)

Name: 13

8. (5 points) Zhen-erators Produce Power

Implement the generator function powers of two that iterates over the infinite sequence of non-negative integer
powers of two, starting from 1. You must do this by selectively including elements from an infinite sequence of
integers, created by calling the provided integers generator function.

You may only use the lines provided. You may not need to fill all the lines.

Hint: You may find the drop generator function useful.

def integers(n):

while True:

yield n

n += 1

def drop(n, s):

for _ in range(n):

next(s)

for elem in s:

yield elem

def powers_of_two(ints=integers(_________)):

"""

>>> p = powers_of_two ()

>>> [next(p) for _ in range (10)]

[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

"""

curr = ___

yield __

yield from ___

14

9. (2 points) Assorted Trivia-n

For the following four questions, choose two or more to answer. Each correct answer you provide is worth one
point, but you can only earn a maximum of two points.

(a) (1 pt) What is one of the benefits that Apache Spark provides?

(b) (1 pt) In one sentence, describe a problem other than the halting problem that is undecidable.

(c) (1 pt) In one sentence, describe one reason why the Caesar cipher can be easily broken by a computer.

(d) (1 pt) In one sentence, what is a rollout in the context of reinforcement learning?

10. (0 points) We Must All Brain Together

In the box below, write a positive integer. The student who writes the lowest unique integer will receive one
extra credit point. In other words, write the smallest positive integer that you think no one else will write.

However, if no one’s answer is unique, then everyone receives one extra credit point. So an optimal solution
would be, for example, if everyone wrote 1. Do you trust your fellow students?

11. (0 points) What a Marvelous Summer

The staff have used the letters of this exam to encode a message for you! Thank you for a fantastic semester.
Write the decoded message in the box below. (This isn’t worth any extra credit.)

4[0] 11[11] 6[2] 4[3] 2[2] 3[4] 10[5] 4[2] 1[8] 9[0] 5[3] 3[5] 1[1] 8[3] 7[5] 4[-1]

