Magnetic Disk – common I/O device
Magnetic Disk – common I/O device

- A kind of Computer Memory:
 - Information sorted by magnetizing ferrite material on surface of rotating disk (similar to tape recorder except binary signaling).
 - Nonvolatile storage – retains its value without applying power to disk.
- Types:
 - Floppy disks – slower, less dense, removable.
 - Hard Disk Drives – faster, more dense, non-removable.
- Purpose in computer systems (Hard Drive):
 1. Long-term, inexpensive storage for files
 2. “Backup” for main-memory. Large, inexpensive, slow level in the memory hierarchy (virtual memory)
Hard Drives are Sealed. Why?

° The closer the head to the disk, the smaller the “spot size” and thus the denser the recording.
 • Measured in Gbit/in\(^2\). ~60 is state of the art.

• Disks are sealed to keep the dust out.
 • Heads are designed to “fly” at around 5-20nm above the surface of the disk.
 • 99.999% of the head/arm weight is supported by the air bearing force (air cushion) developed between the disk and the head.

Photo of Disk Head, Arm, Actuator
Disk Device Terminology

- Several platters, with information recorded magnetically on both surfaces (usually)
- Bits recorded in tracks, which in turn divided into sectors (e.g., 512 Bytes)
- Actuator moves head (end of arm) over track ("seek"), wait for sector rotate under head, then read or write

Disk Device Performance

- Disk Latency = Seek Time + Rotation Time + Transfer Time + Controller Overhead
 - Seek Time? depends on no. tracks to move arm, speed of actuator
 - Rotation Time? depends on speed disk rotates, how far sector is from head
 - Transfer Time? depends on data rate (bandwidth) of disk (f(bit density,rpm)), size of request
Disk Device Performance

° Average distance of sector from head?

° 1/2 time of a rotation
 • 7200 Revolutions Per Minute ⇒ 120 Rev/sec
 • 1 revolution = 1/120 sec ⇒ 8.33 milliseconds
 • 1/2 rotation (revolution) ⇒ 4.17 ms

° Average no. tracks to move arm?
 • Disk industry standard benchmark:
 Sum all time for all possible seek distances from all possible tracks / # possible
 - Assumes average seek distance is random

Data Rate: Inner vs. Outer Tracks

° To keep things simple, originally same number of sectors per track
 • Since outer track longer, lower bits per inch

° Competition ⇒ decided to keep bits per inch (BPI) high for all tracks (“constant bit density”)
 ⇒ More capacity per disk
 ⇒ More sectors per track towards edge
 ⇒ Since disk spins at constant speed, outer tracks have faster data rate

° Bandwidth outer track 1.7X inner track!
Disk Performance Model /Trends

° Capacity
 + 100%/year (2X / 1.0 yrs)

 Over time, this has grown so fast that # of platters has reduced (some even use only one now!)

° Transfer rate (BW)
 + 40%/year (2X / 2.0 yrs)

° Rotation + Seek time
 – 8%/year (1/2 in 10 yrs)

° MB/$
 > 100%/year (2X / 1.0 yrs)
 Fewer chips + bit density improvement

• 73.4 GB, 3.5 inch disk
• 10,000 RPM; 3 ms = 1/2 rotation
• 6 platters, 12 surfaces
• 13.2 Gbit/sq. in. areal den
• 10 watts (idle)
• 0.1 ms controller time
• 4.9 ms avg. seek
• 49 to 87 MB/s(internal)

Lower performance disks with similar capacities are available for $3-$9/GB

source: www.ibm.com;
State of the Art: Barracuda 180 (~2001)

- 181.6 GB, 3.5-inch disk
- 7200 RPM; SCSI
 4.16 ms = 1/2 rotation
- 12 platters, 24 surfaces
 31.2 Gbit/sq. in. areal den
- 10 watts (idle)
- 0.1 ms controller time
- 8.0 ms avg. seek
- 35 to 64 MB/s (internal)
- $7.50 / GB
 (Lower capacity, ATA/IDE disks ~ $2 / GB)

source: www.seagate.com;

- 250 GB, 3.5 inch disk
- 7200 RPM;
 4.17 ms = 1/2 rotation
- 3 platters, 6 surfaces
 (125GB/platter)
- 62 Gbit/sq. in. areal den
- 7.0 watts (idle)
- 0.1 ms controller time
- 8.5 ms avg. seek
- Transfer rate:
 - 105 MB/s (internal)
 - 33-68 MB/s (external)
- $166, $1.50/GB

Lower capacities disks are available for < $1/GB

source: www.hitachi.com;
State of the Art: Deskstar 7K500 (~2005)

- 500 GB, 3.5 inch disk
- 7200 RPM; 4.17 ms = 1/2 rotation
- 5 platters, 10 surfaces (100GB/platter)
- 62 Gbit/sq. in. areal den
- 9.0 watts (idle)
- 0.1 ms controller time
- 8.5 ms avg. seek
- Transfer rate:
 - 102 MB/s (internal)
 - 31-64.8 MB/s (external)
- $350, $1.50/GB

Lower capacities disks are available for < $1/GB

Disk Performance Example

° Calculate time to read 1 sector (512B) for Deskstar using advertised performance; sector is on outer track

Disk latency = average seek time + average rotational delay + transfer time + controller overhead

= 8.5 ms + 0.5 * 1/(7200 RPM) + 0.5 KB / (100 MB/s) + 0.1 ms

= 8.5 ms + 0.5 / (7200 RPM/(60000ms/M)) + 0.5 KB / (100 KB/ms) + 0.1 ms

= 8.5 + 4.17 + 0.005 + 0.1 ms = 12.77 ms

° How many CPU clock cycles is this?
Areal Density

- Bits recorded along a track
 - Metric is **Bits Per Inch (BPI)**

- Number of tracks per surface
 - Metric is **Tracks Per Inch (TPI)**

- We care about **bit density per unit area**
 - Metric is **Bits Per Square Inch**
 - Called **Areal Density**
 - Areal Density = BPI x TPI

Early Disk History (IBM)

<table>
<thead>
<tr>
<th>Data density Mbit/sq. in</th>
<th>Capacity of Unit Shown Megabytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973: 1.7 Mbit/sq. in</td>
<td>140 MBytes</td>
</tr>
<tr>
<td>1979: 7.7 Mbit/sq. in</td>
<td>2,300 MBytes</td>
</tr>
</tbody>
</table>

Early Disk History

1989:
63 Mbit/sq. in
60,000 MBytes

1997:
1450 Mbit/sq. in
1600 MBytes

1997:
3090 Mbit/sq. in
8100 MBytes

“Makers of disk drives crowd even more data into even smaller spaces”

Areal Density

• Areal Density = BPI x TPI
• Change slope 30%/yr to 60%/yr about 1990
 “Giant Magnetoresistive” effect head (highly sensitive)
Historical Perspective

- **Form factor and capacity** are more important in the marketplace than is performance

- Form factor evolution:
 - 1970s: Mainframes ⇒ 14 inch diameter disks
 - 1980s: Minicomputers, Servers ⇒ 8”, 5.25” diameter disks
 - Late 1980s/Early 1990s:
 - PCs ⇒ 3.5 inch diameter disks
 - Laptops, notebooks ⇒ 2.5 inch disks
 - Palmtops didn’t use disks, so 1.8 inch diameter disks didn’t make it
 - Early 2000s:
 - MP3 players ⇒ 1 inch disks

1 inch disk drive! (slide from 2001)

- **2000 IBM MicroDrive:**
 - 1.7” x 1.4” x 0.2”
 - 1 GB, 3600 RPM, 5 MB/s, 15 ms seek
 - Digital camera, PalmPC?

- **2006 MicroDrive?**
 - 9 GB, 50 MB/s!
 - Assuming it finds a niche in a successful product
 - Assuming past trends continue

- **Hitachi 3K8 (introduced 2005)**
 - Development driven by MP3 players, cameras, etc.
 - 8GB, 5-10MB/s
 - Smaller size, 40x30x5 mm
 - 4,000 songs, 10 hours MPEG-4 video, 8,000 digital photos
Bonus homework problems

Suppose a typical book is 400 pages long, each page on average it has 40 lines of text, and an average of line of text has 80 characters. The PDF version of a chapter of our textbook takes 632 KB for 80 pages. The highest capacity 3.5-inch drive today is 500 GB.

1. How many books fit in such a disk today in text? in PDF? How long would it take to access a book from disk?

2. The Kreege Engineering library has 160,000 books and the Bancroft library has 400,000. If disk capacity doubles every year, when would a single disk contain all the books in these two libraries using text? PDF? Might this have impact on the campus? How?
Use Arrays of Small Disks?

- Katz and Patterson asked in 1987:
 - Can smaller disks be used to close gap in performance between disks and CPUs?

Conventional:
- 4 disk designs
- 3.5” 5.25” 10” 14”
- Low End → High End

Disk Array:
- 1 disk design
- 3.5”

Replace Small Number of Large Disks with Large Number of Small Disks! (1988 Disks)

<table>
<thead>
<tr>
<th></th>
<th>IBM 3390K</th>
<th>IBM 3.5" 0061</th>
<th>x70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>20 GBytes</td>
<td>320 MBytes</td>
<td>23 GBytes</td>
</tr>
<tr>
<td>Volume</td>
<td>97 cu. ft.</td>
<td>0.1 cu. ft.</td>
<td>11 cu. ft.</td>
</tr>
<tr>
<td>Power</td>
<td>3 KW</td>
<td>11 W</td>
<td>1 KW</td>
</tr>
<tr>
<td>Data Rate</td>
<td>15 MB/s</td>
<td>1.5 MB/s</td>
<td>120 MB/s</td>
</tr>
<tr>
<td>I/O Rate</td>
<td>600 l/Os/s</td>
<td>55 l/Os/s</td>
<td>3900 l/Os/s</td>
</tr>
<tr>
<td>MTTF</td>
<td>250 KHrs</td>
<td>50 KHrs</td>
<td>??? Hrs</td>
</tr>
<tr>
<td>Cost</td>
<td>$250K</td>
<td>$2K</td>
<td>$150K</td>
</tr>
</tbody>
</table>

Disk Arrays potentially high performance, high MB per cu. ft., high MB per KW, **but what about reliability?**
Array Reliability

- **Reliability** - whether or not a component has failed
 - measured as Mean Time To Failure (MTTF)

- Reliability of N disks
 = Reliability of 1 Disk ÷ N
 (assuming failures independent)
 - 50,000 Hours ÷ 70 disks = 700 hour

- Disk system MTTF:
 Drops from 6 years to 1 month!

- Disk arrays too unreliable to be useful!

Redundant Arrays of (Inexpensive) Disks

- Files are "striped" across multiple disks

- **Redundancy** of data
 - Availability: service still provided to user, even if some components failed
 - When disk fails, contents reconstructed from data redundantly stored in the array
 ⇒ Capacity penalty to store redundant info
 ⇒ Bandwidth penalty to update redundant info
Bonus slide: Berkeley History, RAID-I

RAID-I (1989)
- Consisted of a Sun 4/280 workstation with 128 MB of DRAM, four dual-string SCSI controllers, 28 5.25-inch SCSI disks and specialized disk striping software

Today RAID is $27 billion dollar industry, 80% nonPC disks sold in RAIDs

Things to Remember
- Magnetic Disks continue rapid advance: 60%/yr capacity, 40%/yr bandwidth, slow on seek, rotation improvements, MB/$ improving 100%/yr.
 - Designs to fit high volume form factor
 - Quoted seek times too conservative, data rates too optimistic for use in system

RAID
- Higher performance with more disk arms per $
- Adds availability option for small number of extra disks
- Today RAID is $27 billion dollar industry, 80% nonPC disks sold in RAIDs; started at Cal