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A 19-year project led by Prof Jonathan 
Schaeffer, he used dozens (sometimes 
hundreds) of computers and AI to 
prove it is, in perfect play, a … draw! 
This means that if two Gods were to 
play, nobody would ever win! 

UC Berkeley EECS 
Lecturer SOE 
Dan Garcia 

www.cs.ualberta.ca/~chinook/ 
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  History 
  Definitions 

  Game Theory 
  What Games We Mean 
  Win, Lose, Tie, Draw 
  Weakly / Strongly Solving 

  Gamesman 
  Dan’s Undergraduate 

R&D Group 
  Demo!! 

  Future 

Computational Game Theory 
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  CS research areas: 
  Artificial Intelligence 
  Biosystems & Computational Biology 
  Computer Architecture & Engineering 
  Database Management Systems 
  Graphics 
  Human-Computer Interaction 
  Operating Systems & Networking 
  Programming Systems 
  Scientific Computing 
  Security 
  Theory 
  … 

Computer Science … A UCB view 
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  A Hoax! 
  Built by Wolfgang von 

Kempelen  
  to impress the Empress 

  Could play a strong game 
of Chess 
  Thanks to Master inside 

  Toured Europe 
  Defeated Benjamin Franklin 

& Napoleon! 

  Burned in an 1854 fire 
  Chessboard saved… 

The Turk (1770) 
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  The “Father of 
Information Theory” 
  Founded the digital computer 
  Defined fundamental limits 

on compressing/storing data 

  Wrote “Programming a 
Computer for Playing 
Chess” paper in 1950 
  C. Shannon, Philos. Mag. 41, 

256 (1950). 
  All chess programs today 

have his theories at their core 
  His estimate of # of Chess 

positions called “Shannon #” 
  Now proved < 2155 ~ 1046.7 

Claude Shannon’s Paper (1950) 
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  Kasparov World Champ 

  1996 Tournament – Deep Blue 
  First game DB wins a classic! 
  But DB loses 3 and draws 2 to 

lose the 6-game match 4-2 
  In 1997 Deep Blue upgraded, 

renamed “Deeper Blue” 

  1997 Tournament – Deeper Blue 
  GK wins game 1 
  GK resigns game 2 

  even though it was draw! 

  DB & GK draw games 3-5 
  Game 6 : 1997-05-11 (May 11th) 

  Kasparov blunders move 7, loses in 19 
moves. Loses tournament 3 ½ - 2 ½ 

  GK accuses DB of cheating. No rematch. 

  Defining moment in AI history 

Deep Blue vs Garry Kasparov (1997) 
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Economic 
  von Neumann and 

Morgenstern’s 1944 
Theory of Games and 
Economic Behavior 

  Matrix games 
  Prisoner’s dilemma, 

auctions 
  Film : A Beautiful Mind 

(about John Nash) 
  Incomplete info, 

simultaneous moves 
  Goal: Maximize payoff 

    Computational 
  R. C. Bell’s 1988 

Board and Table 
Games from many 
Civilizations 

  Board games 
  Tic-Tac-Toe, Chess, 

Connect 4, Othello 
  Film : Searching for 

Bobby Fischer 
  Complete info, 

alternating moves 
  Goal: Varies 

What is “Game Theory”? 



UC Berkeley CS10 “The Beauty and Joy of Computing” : Computational Game Theory (8) 

Garcia, Spring 2011 

  No chance, such as dice 
or shuffled cards 

  Both players have 
complete information 
  No hidden information, as in 

Stratego & Magic 

  Two players (Left & Right) 
usually alternate moves 
  Repeat & skip moves ok 
  Simultaneous moves not ok 

  The game can end in a 
pattern, capture, by the 
absence of moves, or … 

What “Board Games” do you mean? 
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What’s in a Strong Solution 

  For every position 
  Assuming alternating play 
  Value …  

(for player whose turn it is) 
    Winning (∃ losing child) 
    Losing (All children winning) 
    Tieing (!∃ losing child, but ∃ 

tieing child) 
    Drawing (can’t force a win or 

be forced to lose) 

  Remoteness 
  How long before game ends? 
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  We strongly solve 
abstract strategy 
games and puzzles 
  70 games / puzzles in 

our system 
  Allows perfect play 

against an opponent 
  Ability to do a post-

game analysis 



UC Berkeley CS10 “The Beauty and Joy of Computing” : Computational Game Theory (11) 

Garcia, Spring 2011 

What did you mean “strongly solve”? 
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Peer Instruction 
1.  Every year computer power (speed, storage) is 

growing exponentially, so eventually they’ll be 
able to strongly solve the world’s board games. 

2.  I’m happy when a game is strongly solved. 

   12 
a) FF 
b) FT 
c) TF 
d) TT 
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Weakly Solving A Game (Checkers) 

Endgame 
databases 

(solved) 

Master: 
main line of 

play to consider 

Workers:  
positions to search 

Log of Search Space Size 
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Strong Solving Example: 1,2,…,10 
  Rules (on your turn): 

  Running total = 0 

  Rules (on your turn): 
  Add 1 or 2 to running total 

  Goal 
  Be the FIRST to get to 10 

  Example 
  Ana: “2 to make it 2” 
  Bob: “1 to make it 3” 
  Ana: “2 to make it 5” 
  Bob: “2 to make it 7”  photo 
  Ana: “1 to make it 8” 
  Bob: “2 to make it 10” I WIN! 
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Example: Tic-Tac-Toe 

  Rules (on your turn): 
  Place your X or O in an 

empty slot on 3x3 board 

  Goal 
  If your make 3-in-a-row 

first in any row / 
column / diag, win 

  Else if board is full with 
no 3-in-row, tie 

  Misére is tricky 
  3-in-row LOSES 
  Pair up and play now, 

then swap who goes 1st 



UC Berkeley CS10 “The Beauty and Joy of Computing” : Computational Game Theory (16) 

Garcia, Spring 2011 

Tic-Tac-Toe Answer Visualized! 
  Recursive Values Visualization Image 
  Misére Tic-tac-toe 

  Outer rim is position 
  Inner levels moves 
  Legend 

Lose 
Tie 
Win 
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GamesCrafters 
  Undergraduate Computational 

Game Theory Research Group 

  300 students since 2001 
  We now average 20/semester! 
  They work in teams of 2+ 

  Most return, take more senior 
roles (sub-group team leads) 
  Maximization (bottom-up solve) 
  Oh, DeepaBlue (parallelization) 
  GUI (graphical interface work) 
  Retro (GUI refactoring) 
  Architecture (core) 
  New/ice Games (add / refactor) 
  Documentation (games & code) 
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Connect 4 Solved, Online! 
  We’ve just finished a 

solve of Connect 4!! 
  It took 30 Machines x 

8 Cores x 1 weeks 
  Win for the first player 

(go in the middle!) 
  3,5 = tie 
  1,2,6,7 = lose 

  Come play online! 
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  Board games are exponential  
  So has been the progress of the 

speed / capacity of computers! 
  Therefore, every few years, we only 

get to solve one more “ply” 

  One by one, we’re going to solve 
them and/or beat humans 
  We’ll never solve some 

  E.g., hardest game : Go 

  Strongly solving (GamesCrafters) 
  We visit EVERY position, and  

know value of EVERY position 
  E.g., Connect 4 

  Weakly solving (Univ Alberta) 
  We prove game’s value by only 

visiting SOME positions, so we only 
know value of SOME positions 

  E.g., Checkers 

Future 


