2010Fa CS10 Online Final Answers

Section 1

Instructions:

Save the file containing your answers with the name
FinalYourfirstnameYourlastname.ypr (e.g., FinalBarackObama.ypr). You can assume that all the inputs that your program will ever be given are valid, so you do not have to perform any error checking. You will submit your solution on bSpace. When you are done, go to the Assignments tab and click on the Online Final assignment corresponding to your lab section. Upload your file, and do not forget to click Submit!

Take a deep breath and calm down before moving on: this exam is not worth having heart failure about. Good luck!

1. Create the block
list of numbers from \square to
that takes in a minimum and a maximum, and reports a list of numbers from the minimum to the maximum (both inclusive). So, for example,
list of numbers from (5) to (8)
would report the list

list $5 \longdiv { 6 } 7 8$ 4.

You can approach this question using any of the techniques that you have learned in this class.

Answer:

2. Create the block
word->list
that takes in a word and reports a list of all of the characters in that word. So, for example,
would report the list

(list berkenequ)

Again, you can approach this question using any of the techniques that you have learned in this class.

Answer:

3. A number is called pandigital if it uses all of the digits from 1 to n exactly once, where n is the number of digits in the number. So, for example, the five-digit number 15432 is pandigital, but the five-digit number 11132 is not. Again, the four-digit number 4123 is pandigital, but the four-digit number 8312 is not. Finally, the one-digit number 1 is pandigital, but the one-digit number 3 is not.

Create a predicate block
is $\mathrm{C}_{\text {pandigital? }}$
that checks if a number satisfies the definition above. The block should, for example, report true for the following:

```
is 15432 pandigital?
is 4123 pandigital?
is 1 pandigital?
```

and false for the following:
is 11132 pandigital?
is 8312 pandigital?
is 3 pandigital?
You should use higher-order functions in your solution. You cannot use explicit recursion or the yellow and orange loop constructs (such as repeat, repeat until, and for); you can, however, use the built-in list blocks in the Variables tab and the HOF blocks from ToolSprite. You will find the blocks that you created in earlier questions useful.

Answer:

4. Using your block from question 3, have Alonzo say all of the pandigital numbers between 1 and 135 in a comma-separated sentence when the green flag is clicked. There are five pandigital numbers between 1 and 135, so Alonzo should say "1, 12, 21, 123,132 " when the green flag is clicked. This may take 1-2 minutes to compute, so don't worry if Alonzo doesn't speak up right away.

You should use higher-order functions in your solution. You cannot use explicit recursion or the yellow and orange loop constructs (such as repeat, repeat until, and for); you can, however, use the built-in list blocks in the Variables tab and the HOF blocks from ToolSprite. You will find the blocks that you created in earlier questions useful.

Answer:

2010Fa CS10 Online Final

Section 2

Instructions:

Save the file containing your answers with the name
FinalYourfirstnameYourlastname.ypr (e.g., FinalBarackObama.ypr). You can assume that all the inputs that your program will ever be given are valid, so you do not have to perform any error checking. You will submit your solution on bSpace. When you are done, go to the Assignments tab and click on the Online Final assignment corresponding to your lab section. Upload your file, and do not forget to click Submit!

Take a deep breath and calm down before moving on: this exam is not worth having heart failure about. Good luck!

1. Create the block

list of numbers from 0 to

that takes in a minimum and a maximum, and reports a list of numbers from the minimum to the maximum (both inclusive). So, for example,
list of numbers from (5) to 8)
would report the list

list $5 \longdiv { 6 } 7 8$ 4.

You can approach this question using any of the techniques that you have learned in this class.

Answer:

2. Create the block

word->list

that takes in a word and reports a list of all of the characters in that word. So, for example,

> word->list berkeley
would report the list

listberkenequ)

Again, you can approach this question using any of the techniques that you have learned in this class.

Answer:

3. We will call a number narcissistic if it satisfies the following property: if the number has n digits, then it should be the sum of all of its digits, each raised to the nth power. So, for example, the number 153 is narcissistic, because 153 is a 3 -digit number, and if you were to raise each digit to the third power -- $1^{3}, 5^{3}, 3^{3}$-- and add them, then you would get 153 back. In other words, $153=1^{3}+5^{3}+3^{3}$. 1634 is also a narcissistic number, since $1634=1^{4}+6^{4}+3^{4}+4^{4}$.

Create a predicate block
is \square narcissistic?
that checks if a number satisfies the definition above. The block should, for example, report true for the following:
is 153 narcissistic?
is 1634 narcissistic?

You should use higher-order functions in your solution. You cannot use explicit recursion or the yellow and orange loop constructs (such as repeat, repeat until, and for); you can, however, use the built-in list blocks in the Variables tab and the HOF blocks from ToolSprite. You will find the blocks that you created in earlier questions useful.

You may also find it useful to write the block

raised to the power

that raises the first input to the second input (where both inputs are always positive integers). However, the same restrictions apply for this block: you should use higherorder functions in your solution. You cannot use explicit recursion or the yellow and orange loop constructs (such as repeat, repeat until, and for); you can, however, use the built-in list blocks in the Variables tab and the HOF blocks
from ToolSprite. You will find the blocks that you created in earlier questions useful.

4. Using your block from question 3, have Alonzo say all of the narcissistic numbers between 1 and 160 in a comma-separated sentence when the green flag is clicked. There are ten narcissistic numbers between 1 and 160, so Alonzo should say " 1,2 , $3,4,5,6,7,8,9,153$ " when the green flag is clicked. This may take $1-2$ minutes to compute, so don't worry if Alonzo doesn't speak up right away.

You should use higher-order functions in your solution. You cannot use explicit recursion or the yellow and orange loop constructs (such as repeat, repeat until, and for); you can, however, use the built-in list blocks in the Variables tab. You will find the blocks that you created in earlier questions useful.

Answer:

2010Fa CS10 Online Final

Section 3

Instructions:

Save the file containing your answers with the name
FinalYourfirstnameYourlastname.ypr (e.g., FinalBarackObama.ypr). You can assume that all the inputs that your program will ever be given are valid, so you do not have to perform any error checking. You will submit your solution on bSpace. When you are done, go to the Assignments tab and click on the Online Final assignment corresponding to your lab section. Upload your file, and do not forget to click Submit!

Take a deep breath and calm down before moving on: this exam is not worth having heart failure about. Good luck!

1. Create the block

list of numbers from 0 to

that takes in a minimum and a maximum, and reports a list of numbers from the minimum to the maximum (both inclusive). So, for example,
list of numbers from (5) to 8)
would report the list

list $5 \longdiv { 6 } 7 8$ 4.

You can approach this question using any of the techniques that you have learned in this class.

Answer:

2. Create the block

word->list

that takes in a word and reports a list of all of the characters in that word. So, for example,

> word->list berkeley
would report the list

listberkenequ)

Again, you can approach this question using any of the techniques that you have learned in this class.

Answer:

3. A number is called a factorion if it is equal to the sum of the factorials of its digits. For example, 145 is a factorion since $145=1!+4!+5$! (Remember that n ! is the fancy, mathematical way of denoting the factorial of n, which is the product of all of the numbers from 1 to the number n.) Another, relatively simpler example of a factorion is 2 , since 2 is equal to 2 ! (We're not exclaiming there.)

Create a predicate block
is Q a factorion?
that checks if a number is a factorion. The block should, for example, report true for the following:

```
is 145 a factorion?
```


is 2 a factorion?

You should use higher-order functions in your solution. You cannot use either explicit recursion, or the yellow and orange loop constructs (such as repeat, repeat until, and for); you can, however, use the built-in list blocks in the Variables tab and the HOF blocks from ToolSprite. You will find the blocks that you created in earlier questions useful.

You may also find it useful to write the block

factorial of

that finds the factorial of its input. However, the same restrictions apply for this block: you should use higher-order functions in your solution. You cannot use explicit recursion or the yellow and orange loop constructs (such as repeat, repeat until, and for); you can, however, use the built-in list blocks in the Variables tab and the HOF blocks from ToolSprite. You will find the blocks that you created in earlier questions useful.

Answer:

4. Using your block from question 3, have Alonzo say all of the factorions between 1 and 150 in a comma-separated sentence when the green flag is clicked. There are three factorions between 1 and 150 , so Alonzo should say " $1,2,145$ " when the green flag is clicked. This may take 1-2 minutes to compute, so don't worry if Alonzo doesn't speak up right away.

You should use higher-order functions in your solution. You cannot use explicit recursion or the yellow and orange loop constructs (such as repeat, repeat until, and for); you can, however, use the built-in list blocks in the Variables tab and the HOF blocks from ToolSprite. You will find the blocks that you created in earlier questions useful.

Answer:

