The Beauty and Joy of ’
Courr?puﬁng y

Lecture #4 : Functions

UC Berkeley EECS l Quest (first exam] in in 16 days!!
Sr Lecturer SOE
Dan Garcia
THE FUTURE OF VIDEO GAMES?

Valve (video game makers of Half-Life) believes
the future of video games may not be in the
input device (ala the Wii remotes or your body
ala Kinect), but the output device! What is
shown on the right is an augmented reality
device, layering 3D content onto the real world.

http://www.nytimes.com/2012/09/09/technology/
valve-a-video-game-maker-with-few-rules.html

‘/t . .
Function basics

= Functions take in O or
more inputs and return
exactly 1 output
= The same inputs MUST
yield same outputs.
= Output function of input only
= Other rules of functions
= No state (prior history)
= No mutation (no variables

get modified)
= No side effects (nothing else CS lllustrated function metaphor
_ happens)
O y and Joy of Computing” : @oco

2 Types of input (there are more)

* Words separated by N
spaces, N2 0
*E.g.,CS10is great

Sentences
Word %> Lnosaces
Character 7,

Digit 7"

olf

ly and Joy of Computing” O3

F

Generadlization (in CS10)

= You are going to learn
to write functions, like
in math class:

REVIEW

y = sin(x)

= sin is the function
o xis the input
= It returns a single value,

“Function machine” from Simply
Scheme (Harvey)

a number
(® o
|\ & e e e Co (@O0
¥ .
More Terminology (from Math)
= Domain = Range
= The “class” of input a function o All the possible return values
accepts of a function
= Examples = Examples
= Sqrt of = Sqrt of
= Positive numbers = Non-negative numbers
= Length of o Length of
= Sentence, word, number * Non-negative integer
s < s <
= Both: Sentence, word, number * Boolean (true or false)
e _and_ e _and_
* Booleans = Boolean (true or false)
o Letter _of _ o Lefter _of _
= Number from 1to input length - Lefter
* Sentence, word, number _—
0 “The Beauty and Joy of Computing” : @®@@

> Why functions are great!

= If a function only depends on
the information it gets as
input, then nothing else can
affect the output.
= It can run on any computer and
get the same answer.
= This makes it incredibly easy
to parallelize functions.
= Functional programming is a
great model for writing software

that runs on multiple systems at
the same time.

~The Beouty and Joy of Computing”

4 Scratch > BYOB (Build Your Own Blocks)

\\;% Snap!

= Scratch = BYOB (and Snar!)
= Invented @ MIT = Based on Scratch code
= Maintained by MIT = Maintained by jens & Cal
= Huge community = Growing community
= Sharing via Website = No sharing (yet) ®

o

No functions &
Scratch 2.0 in Flash
= No iOS devices. ®

Y scratch.mit.edu

o

Functions! © ... “Blocks”
Snap! Is in HTML5

= All devices ©
snap.berkeley.edu/run Garda

o
o

N
y
o

o

b4 y and Joy of Computing” o) (©1eEe)

b
Why use functions? (2)

They can be composed together to
make even more magnificent things.

They are literally the building blocks of
almost everything that we create when
we program.

We call the process of breaking big
problems down into smaller tasks
functional decomposition

I am
"x.\ join \m / vears older than you, ",,«“
(®) 050
St y and Joy of Computing” m® &

o, . .
Quick Preview: Recursion

Recursion is a
technique for
defining functions
that use themselves

definition.

We will spend a lot of
time on this.

St y ond Joy of Computing” ©0890

e
Why use functions? (1)
&ED J P
e 8 o [N s e
- o]
- meoe QD steve
w ‘t\rn D) qurQ!;
ey - I
turn & () degrees
L - I
o |
move stepe
turn & -v--
-
The power of generalization! -
“The Becuty and Joy of Computing” m ©ree

" Types of Blocks

= Command

play drum for (¥} beats
- No oufputs, meant for G es e 02 Loty
side-effects move steps

= Not a function...

= Reporter (Function) ; hello [world)
= Any type of output
= Predicate (Function) L . @)

= Boolean output
* (true or false)

> Functions Summary

= Computation is the
evaluation of functions f (X) = (x+3) * ﬂ
= Plugging pipes together
= Each pipe, or function, has X
exactly 1 output
= Functions can be input!

= Features x 3 X

s No state
- E.g., variable assignments

s No mutation f
]

- E.g., changing variable values

= No side effects

= Need BYOB/Snap!, and *

not Scratch 1.x 9\7

