

# The Beauty and Joy of Computing

Lecture #11: Recursion II

2012-07-09

UC Berkeley EECS
Summer Instructor
Ben Chun

#### **VERY SNEAKEY**

Back in 2008, researchers at UCSD demonstrated that they could make a working copy of a key based on a photo taken from 195 feet away. The shape of a key is actually a secret that can be stolen and needs to be protected!



http://vision.ucsd.edu/~blaxton/sneakey.html

#### How the Computer Works ... n!

- Factorial(n) = n!
- Informal Definition
  n! = [1\*2\*3\*...\*n]
- Inductive Definition

$$n! = \begin{cases} 1 & \text{, if } n = 0 \\ n * (n-1)! & \text{, if } n > 0 \end{cases}$$







## How the Computer Works ... n!

- Let's act it out...
  - subcontractor model
- **5**

| n | n!  |
|---|-----|
| 0 | 1   |
| 1 | 1   |
| 2 | 2   |
| 3 | 6   |
| 4 | 24  |
| 5 | 120 |





# Order of growth of # of calls of n!

- a) Constant
- b) Logarithmic
- c) Linear
- d) Quadratic
- e) Exponential









#### **Fibonacci**



Chun, Summer 2012



#### How the Computer Works ... fib(n)

Inductive definition

fib(n) = 
$$\begin{cases} n, n < 2 \\ fib(n-1)+fib(n-2), n > 1 \end{cases}$$

- Let's act it out...
  - subcontractor model
  - fib(5)

| n | TID(N) |
|---|--------|
| 0 | 0      |
| 1 | 1      |
| 2 | 1      |
| 3 | 2      |
| 4 | 3      |
| 5 | 5      |



Let's now: trace... (gif from Ybungalobill@wikimedia)



Chun, Summer 2012



# Order of growth of # of calls of fib(n)

Chimney of Turku Energia, Turku, Finland featuring Fibonacci sequence in 2m high neon lights. By Italian artist Mario Merz for an environmental art project. (Wikipedia)

- a) Constant
- b) Logarithmic
- c) Linear
- d) Quadratic
- e) Exponential











### Counting Change (thanks to BH)

- Given coins {50, 25, 10, 5, 1} how many ways are there of making change?
  - 5: 2 (N,5 P)
  - **10** 
    - 4 (D, 2N, N 5P, 10P)
  - **-** 15
    - 6 (DN,D5P,3N,2N5P,1N10P, 15P)
  - <del>-</del> 100?

```
Count Change amount using coins

if amount < 0 or empty? coins

report 0

report 1

report 1

report Count Change amount using all but first of coins

Count Change amount - item 1 of coins

using coins
```





## Call Tree for "Count Change 10 (10 5 1)"



#### Summary

- It's important to understand the machine model
- It's often the cleanest, simplest way to solve many problems
  - Esp those recursive in nature!
- Recursion is a very powerful idea, and one way to separate good from great

Menger Cube by Dan Garcia





Chun, Summer 2012

