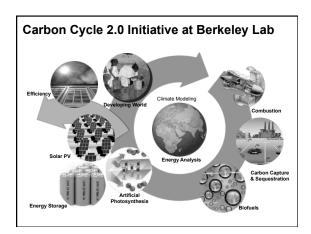
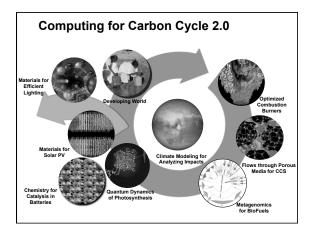


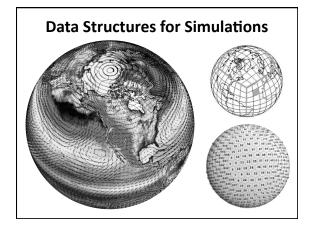
Why are you Interested in Computer Science?

I want to:

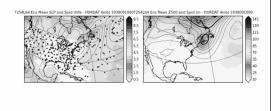

- A. Build computer hardware and software
- B. Create new companies and industries
- C. Solve important problems facing the world
- D. Work on teams with other creative people
- E. All of the above

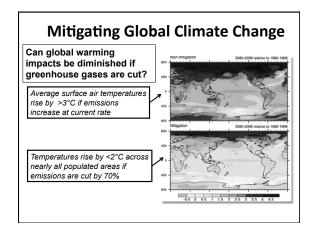


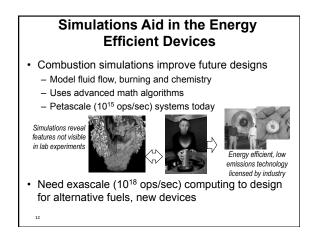


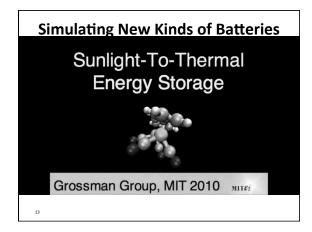

Addressing Challenges using Computing

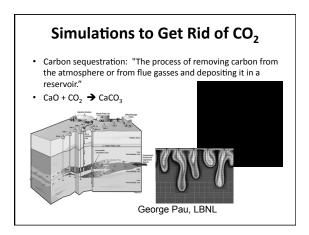
- Two of the most significant challenges
 - Our changing world: understanding climate change, alternative energy sources, mitigation techniques, etc.
 - Health and medicine: understanding the human body, development of treatments, and disease prevention

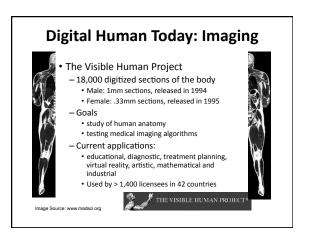


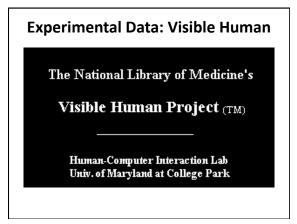


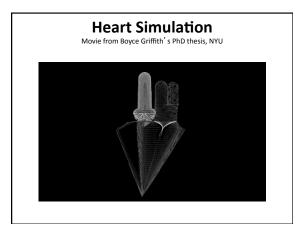


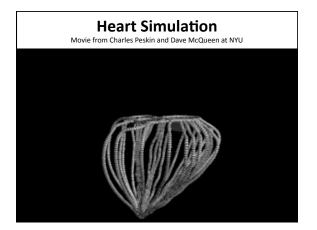

"validate" that the computer models are working as expected

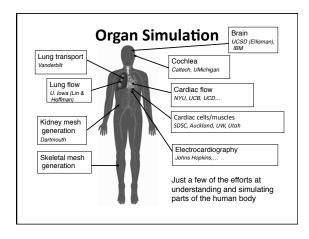

Simulation of 1938 hurricane hitting New York

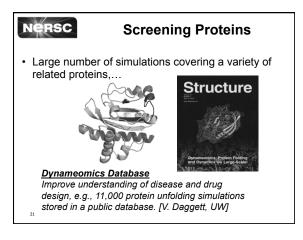


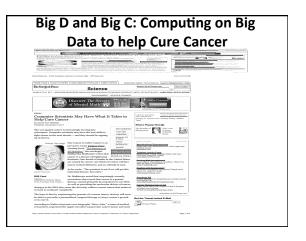


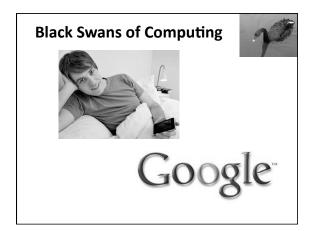





Towards a Digital Human: The 20+ Year Vision Imagine a "digital body double" 3D image-based medical record Includes diagnostic, pathologic, and other information Used for: Diagnosis Less invasive surgery-by-robot Experimental treatments






Why Study Computer Science?

- 1) Because computers can help solve important problems
- 2) Because programming is fun and there are plenty of new problems to solve

Trends in Computer Science

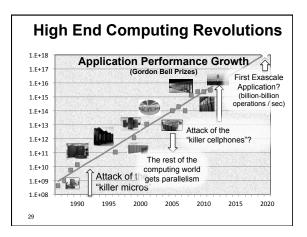
Which of the following are true?

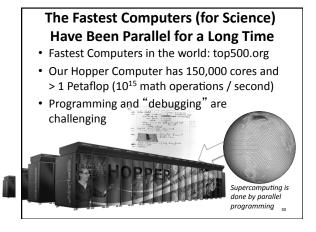
- A. Moore's Law says that processor performance doubles every 18 months
- B. Moore's Law has ended
- C. Current computers are fast enough for most applications
- D. None of the above
- E. All of the above

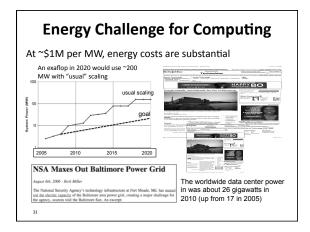
Technology for Innovation

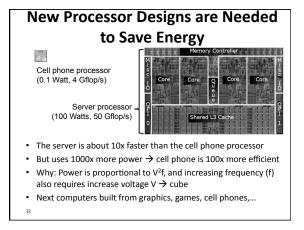
Which of the following are true?

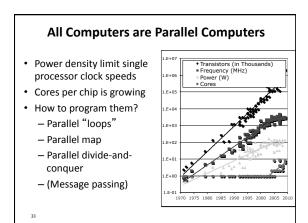
- A. Google developed its own programming language to hide machine failures
- B. iPhones are programmed using Java
- C. Web search algorithms use only integer arithmetic, not floating point (real) numbers
- D. Scientific computing is done mostly using "Vector Supercomputers"
- E. All of the above

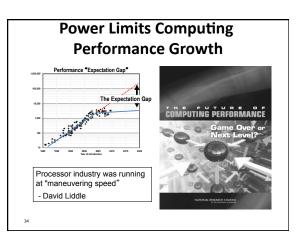

Units of Measure in High Performance Computing (HPC)

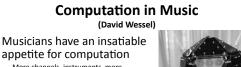

- High Performance Computing (HPC) units are:
 - Flops: floating point operations
 - Flops/s: floating point operations per second
 Bytes: size of data (a double precision floating point number is 8)


• Typical sizes are millions, billions, trillions...


 Typical sizes are millions, billions 		
	Kilo	Kflop/s = 10 ³ flop/sec
1988 1998 2008	Mega	Mflop/s = 10 ⁶ flop/sec
	Giga	Gflop/s = 10 ⁹ flop/sec
	Tera	Tflop/s = 10 ¹² flop/sec
	Peta	Pflop/s = 10 ¹⁵ flop/sec
	Exa	Eflop/s = 10 ¹⁸ flop/sec
	Zetta	Zflop/s = 10 ²¹ flop/sec
	Yotta	Yflop/s = 10 ²⁴ flop/sec


Kbyte = 2^{10} = 1024 ~ 1,000 bytes Mbyte = 2^{20} = 1048576 ~ 10⁶ bytes Gbyte = 2^{30} ~ 10⁹ bytes Tbyte = 2^{40} ~ 10¹⁵ bytes Pbyte = 2^{50} ~ 10¹⁵ bytes Ebyte = 2^{50} ~ 10¹⁵ bytes Zbyte = 2^{70} ~ 10²¹ bytes Ybyte = 2^{80} ~ 10²⁴ bytes





Why Study Computer Science?

- 1) Because computers can help solve important problems
- 2) Because computers are fun to program
- 3) Because computers make a good career

- More channels, instruments, more processing, more interaction!
- Latency must be low (5 ms)
- Must be reliable (No clicks)

Music Enhancer

- Enhanced sound delivery systems for home sound systems using large microphone and speaker arrays
- Laptop/Handheld recreate 3D sound over ear buds
- Hearing Augmenter
- Handheld as accelerator for hearing aid

Berkeley Center for New Music and Audio Technology (CNMAT) created a compact loudspeaker array: 10-inch-diameter icosahedron incorporating 120 tweeters.

Real-Time Deformation and Fracture in a Game Environment

Eric Parker Pixelux Entertainment

> James O'Brien U.C. Berkeley

Video Edited by Sebastian Burke

From the proceedings of SCA 2009, New Orleans

Writing Software

Which of the following are true?

- A. Most computer software is written by brilliant hackers, working alone
- B. Parallel programming is a solved problem
- C. Speed of programming and speed of programs are the top goals in software
- D. Most software is rewritten from scratch every few years
- E. None of the above

Why Study Computer Science?

- 1) Because computers can help solve important problems
- 2) Because computers are fun to program
- 3) Because computers make a good career
- 4) Because you will get to work with lots of great people