General Loading Instructions - Version 1.1

(will be updated again)

Hints on Verilog Files

Useful Reference: http://toolbox.xilinx.com/docsan/xilinx5/manuals.htm
1
Functional simulation

You should have a testbench file, written in verilog, in addition to your circuit file (also written in verilog) to do this part.

Note: make sure your testbench does not change inputs on the positive clock edge. This will give you problems later when you do the timing simulation.

1. Start the Modelsim 5.6d simulator. (Make sure you use Modelsim 5.6d, otherwise, you will get a “library obsolete” type of error message later).

2. Create a new project and add your verilog (*.v) files as existing files.

3. Compile all the files (Compile->Compile All, or right click on “Project” tab’s region and select Compile All from the pull down menu).

4. Start a simulation of your verilog testbench module. (Simulate->Simulate, and select your testbench module under your default library name (ex. work) on the “Design” tab. You do not need to add libraries or *.sdf files at this step)

5. Select view->all windows in the menu bar.

6. Add the signals you wish to probe (ex. IN, E, R, CLK, OUT) in the wave window by dragging them to the wave window from the signals window or the modelsim main window’s “sim” tab.

7. Advance the simulation time by 1microsec by typing, “run 1us”. Look at the waveform from the wave window. Can you tell what the function of this circuit is from here? (You can change the display from binary to hex on a group of signals by right clicking the signal then choosing Radix->Hexadecimal.)

2
Synthesis

1. Start the synthesis program Synplify Pro 7.1.

2. Start a new project from File->New, project file. Make sure you store the project on your U:/ drive instead of the default directory. (this will cause the synthesis to be slower than storing it locally. You can store it locally on the C:/ drive and copy it back to the U:/ drive when you are done – but make sure you don’t forget and lose all your work. The drives get flushed out when you log out.)

3. Add the verilog source files to the project.

a. If you are synthesizing to the Calinx FPGA board, you will need to add FPGA_top.v to tie the board IO pins to FPGA IO pins. This will be your top level circuit. Note that FPGA_top.v will be different for different projects (to see some of the differences, look at the last lines of FPGA_top.v in a text editor).

b. If you are not synthesizing to the Calinx FPGA board, just add your verilog files. You should have one top level circuit file in your design.

Note: Don’t add your testbench verilog file because it is there only to provide input for the design in simulation.

Note2: Move your top level circuit file to be the last file in the list under the verilog folder (in the center of the screen). This will make the generated .edf file have the name of your top level circuit.

4. Open Project->Implementation Options
a. Under the Devices tab, select the technology box and change the target device to “Xilinx Virtex-E”. Then, set the remaining options to “XCV2000E”
and
“FG680”

b. Under the Verilog tab and set TOP LEVEL MODULE to the name of your top level module (ex. FPGA_TOP), not the name of the file containing your top level module.

5. On the main panel, set the frequency to 30 MHz.

6. Note: You can also get the tool to output a Verilog netlist for simulation by choosing Implementation Results->Write Mapped Verilog Netlist. But we will not use this option for this lab. Click RUN.

7. Examine the RTL view and Gate View

a. click on the RTL View button or the Technology View button on the toolbar. (or double click on the .srm or .srs files in the window on the right).

b. Use the Previous Sheet and Next Sheet button to scroll through the schematics, and use the Push/Pop Hierarchy button to navigate.

c. Use the “Instances” list (on the left panel) to find components in your design (highlighting one will highlight the corresponding component in the schematic to the right.

3 Place & Route

Start the Xilinx Project Navigator (double click Project Navigator Icon).

1. Select File->New Project
2. Fill the form with

a. Project Name: Your Project Name zzz (ex. Lab2)
b. Project Location: Path to project

c. Device Family : VirtexE

d. Device: xcv2000e

e. Package: fg680

f. Speed Grad: -6

g. Design Flow: EDIF

And then hit OK

1. In the “Sources in Project” window

a. Select Project -> Add Source : Specify the edif (*.edf) source file. You should find this in one of the “rev_x” directories.

2. If your testbench does not directly test the top level module (ex. Testing modules within FPGA_TOP)

a. Select Project -> New Source. In the form, select “Implementation Constraints File” and specify a name and location for it.

b. In the “Processes for Current Source” window, under“User Constraints” select “Edit Constraints (Text)” and cut and paste:

INST xxx KEEP_HIERARCHY=TRUE;

Where xxx is the name of the circuit you are testing with your testbench.(don’t forget the semicolon!)

3. Double click on the list element “Implement Design”. This should execute all the way down to before “Generate Programming File”.

4. Under “Map->Map Report” you can find the number of slices, 4Luts, and Flipflops used in this design.

4 Floor planner, FPGA editor

In Xilinx Project Navigator, under “Processes for Current Source”

1. “Place and Route-> View/Edit Placed Design (Floorplanner)”

The floor planner is a program that lets the designer do some manual placement. Run the floor planner from Project Navigator. The floor planner should open some windows. The window on the left shows the pieces of components that need to be placed. The gray window shows the result of the automatic placer algorithm. And the white window is an area for the designer to do his own placement.

You can start out with the result of the auto placer by choosing Floorplan -> Replace All With Placement.

2. “Place and Route-> View/Edit Routed Design (FPGA editor)”

After you are done with the floor planner, run the FPGA editor from Project Navigator. This tool shows you an even more detailed view of the FPGA. You can see all the occupied slices and even the detailed routing from this tool. You could also make changes to the design with this tool, however this is not recommended as it is essentially equivalent to modifying the bit stream directly, and thus very prone to errors.

5 Timing Report

In Xilinx Project Navigator, under “Processes for Current Source”
1. Under “Place and Route-> Generate Post-Place & Route Static Timing” double click “Analyze Post-Place & Route Static Timing (Timing Analyzer)”.

2. Click on the second timer button from the left on the toolbar “Analyze Against Auto Generated Design Constraints”.

6 Timing Simulation

The last thing we will do is to simulate the design after it has been placed and routed. This process is a little tricky since it involves the output Verilog file of the Project Navigator, a Xilinx library that contains primitive module delays, and an SDF (Standard Delay Format) file that contains the wire delay between the different components. First, let’s generate the simulation netlist and the delay file (SDF).

In Xilinx Project Navigator, under “Processes for Current Source”
1. Right click on “Place and Route-> Generate Post-Place & Route Simulation Model” and select Properties.
2. For “Simulation Model Target” select Modelsim_Verilog

3. Make up a name for the model: yyy (ex. lab2Timing) and then click OK.

4. Double click on “Generate Post-Place & Route Simulation Model” which will run the utility and generate a yyy.v netlist and a yyy.sdf

5. Edit the generated yyy.v file as follows:

a. comment out these lines:

wire GSR = glbl.GSR;

wire GTS = glbl.GTS;

b. If (and ONLY IF) you have an FPGA_TOP module

i. also comment out these lines:

X_PD NGD2VER_PD_00EEE4F8 (.O (GSR));

X_PD NGD2VER_PD_00EEE510 (.O (GTS));

ii. add these ports to module FPGA_TOP:

GSR, GTS

iii. add them to the port list as follows:

input GSR, GTS;

6. Download http://inst.eecs.berkeley.edu/~cs150/handouts/3/Lab/libs.zip
7. Extract the contents to C:\user\yourlogin
8. Start Modelsim 5.6d
9. Copy the *.sdf file generated from Xilinx Project Navigator (found in your project folder named zzz) to the project folder used by your Modelsim simulator (the one where it stores the *.prj file). This will avoid a read/write permission error later in your simulation (causes the simulation to pause at a breakpoint).

10. Add your verilog testbench file to the project and add your yyy.v netlist to the project. Do NOT add your original circuit file that you added during the functional simulation (the one without timing analysis).

11. Compile the Verilog files.

12. Choose Simulate to open the simulation form.

13. Under the tab “libraries” add the simprims directory that you created from lib.zip

14. Under the “sdf” tab, add your edited *.sdf file.

a. If your testbench is testing a submodule (not the top level circuit), you need to specify the region for the sdf file /testbenchname/component-under test/ where the italicized words need to be replaced with the appropriate names.

15. Then under the “Design” tab select work->testbenchname and hit Load.

16. Repeat the rest of the simulation steps from earlier (running the simulation, viewing the waveforms)

