$2XILINX jogiC 1 PF

Asynchronous FIFO v5.1

DS232 (v0.2) March 28, 2003

Product Specification

Features

e Drop-in module for Virtex™, Virtex-E, Virtex-ll,
Virtex-Il Pro™, Spartan™-Il, Spartan-lIE, and
Spartan-3 FPGAs

» Supports data widths up to 256 bits

e Supports memory depths of up to 65,535 locations

* Memory may be implemented in either SelectRAM+ or
Distributed RAM

* Fully synchronous and independent clock domains for
the read and write ports

* Supports FULL and EMPTY status flags

e Optional ALMOST_FULL and ALMOST_EMPTY status
flags

» Invalid read or write requests are rejected without
affecting the FIFO state

» Four optional handshake signals (WR_ACK, WR_ERR,
RD_ACK, RD_ERR) provide feedback
(acknowledgment or rejection) in response to write and
read requests in the prior clock cycle

» Optional count vector(s) provide visibility into number
of data words currently in the FIFO, synchronized to
either clock domain

» Uses relationally placed macro (RPM) mapping and
placement technology for maximum and predictable
performance

* Incorporates Xilinx Smart-IP™ technology for utmost
parameterization and optimum implementation

* To be used with v5.2i or later of the Xilinx CORE
Generator™ System

— 0]
WA EH FULL —
BALMOBT FLLL [
WR ACK —————
WH CLK Wl Epn —
DO (e—
{ RO EN EMPTY |——
ALMOST EMETY [
AD_COUNT[R-G) |me—
AD_&CK |

{ Rl _CLK AD_ERA

& IWaT

H9rEa

Figure 1: Core Schematic Symbol

Functional Description

The Asynchronous FIFO is a First-In-First-Out memory
queue. Its control logic performs all the necessary read and
write pointer management, generates status flags, and pro-
vides optional handshake signals for interfacing with the
user logic. The individual read and write ports are fully syn-
chronous (all operations qualified by a rising clock edge),
but this FIFO does not require the read and write clocks to
be synchronized to each other.

FIFO status cannot be corrupted by invalid requests.
Requesting a read operation while the EMPTY flag is active
will not cause any change in the current sate of the FIFO.
Similarly, requesting a write operation while the FULL flag is
active will not cause any change in the current state of the
FIFO. If enabled, the RD_ERR and WR_ERR handshake
signals will indicate the rejection of these invalid requests.

In addition to the EMPTY, ALMOST_EMPTY, FULL, and
ALMOST_FULL flags, a count vector can be enabled to pro-
vide a more granular measure of the FIFO state. For the
write domain the vector is WR_COUNT[W:0], and for the
read domain it is RD_COUNT[R:0]. The width of these vec-
tors are user programmable to provide easy generation of
additional flags. For instance, a vector width of one creates
a half-full flag; a width of two creates binary-encoded quad-
rant flags, and so on. In keeping with the fully synchronous

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

DS232 (v0.2) March 28, 2003
Product Specification

www.xilinx.com 1
1-800-255-7778

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Asynchronous FIFO v5.1

2 XILINX jogic 7

interface, the count vector can be synchronized to either the
read or the write clock domain, or two independent counts
can be enabled, one for each clock domain.

Synchronization and Timing Issues

As previously stated, the read and write ports can be oper-
ated on independent asynchronous clock domains. How-
ever, the wuser interface logic still must address
synchronization issues. The core schematic symbol, shown
in Figure 1, divides the signals according to their appropri-
ate clock domains—write on the top half, read on the bot-
tom. All signals, either input or output, are synchronous to
one of the two clocks, with the exception of AINIT, which
performs an asynchronous reset of the entire FIFO. On the
write side, the control (WR_EN) and data input (DIN) are
sampled by the rising edge of WR_CLK and should be syn-
chronous to the WR_CLK. For the read side the read control
(RD_EN) should be synchronous to the RD_CLK and the
output data (DOUT) is valid after the subsequent rising
edge of RD_CLK. All status outputs are synchronous to
their respective clock domains and should be sampled only
by logic operating on a synchronous clock. FIFO perfor-
mance can be effectively constrained and analyzed by plac-
ing the desired clock PERIOD constraints on both the
WR_CLK and RD_CLK source signals.

WR_CLK and RD_CLK are always rising edge active for the
FIFO core. They can be made falling edge active (relative to
the clock source) by inserting an inverter between the clock
source and the FIFO’s clock inputs.

Behavior of Status Signals

The activation of the AINIT, asynchronous initialization
(reset), will force all four FIFO flags to the active (high) state.
On the first WR_CLK after the release of AINIT the FULL
and ALMOST_FULL flags will become inactive, indicating
that the FIFO is now ready to accept write operations.
EMPTY and ALMOST_EMPTY are deactivated on a rising
edge of the RD_CLK following the first and second writes
respectively. The ALMOST_EMPTY flag is active when the
FIFO has one data word or is EMPTY. The ALMOST_FULL
flag is active when the FIFO has only one available memory
location or is FULL.

Optional handshake signals are provided to simplify user
control logic interacting with the FIFO. The WR_ACK and
WR_ERR signals indicate acknowledgment or rejection of
requested write operations. Similarlyy, RD_ACK and
RD_ERR signals indicate the acknowledgment or rejection
of read operations. Each of these control signals can be
made active high or low from the GUI. Note that all of these
handshake signals are synchronous to their respective
clock domains and indicate the acknowledgment or rejec-
tion of requests during the prior rising clock edge. Because
an acknowledgment or error response depends on an
active request (WR_EN or RD_EN), the ACK and ERR sig-
nals are not always the inverse of each other. If no operation

is requested, both the acknowledgment and the error signal
will be inactive during the subsequent clock period. For an
example of expected signal sequencing, refer to the timing
diagram shown in Figure 2.

The optional data count outputs (WR_COUNT and
RD_COUNT) support the generation of user programmable
flags. In the simplest case, selecting a width of one for a
data count produces a half-full flag. Like all other FIFO out-
puts, the counts are synchronized to their respective clock
domains and should be sampled only by logic operating on
the same (or a synchronous) clock. The data count vectors
have clock latency and should not be used as substitutes for
the FULL, ALMOST_FULL, EMPTY, or ALMOST _EMPTY
flags. The clock latency of the counts in their respective
clock domains is one cycle. For example, the WR_COUNT
does not reflect the impact of a write operation performed
as a result of a request (WR_EN active) during the prior
clock cycle. WR_COUNT and RD_COUNT values are not
guaranteed to produce a precise representation of the FIFO
contents at a particular point in time. These values should
be used as a gauge to determine the FIFO status (see
answer record 14518 for more information). The latency for
operations in the opposing clock domain can be up to three
clock cycles. For example, in the case of the WR_COUNT,
read operations that may have been performed during the
immediate three prior RD_CLK periods will not be reflected
in the data count vector. This latency results from a design
trade-off between clock frequency and count accuracy and
is not as limiting as it may at first appear.

Consider the following scenario of a FIFO configured depth
of 63 and a write count of two bits (WR_COUNT][1:0]).

Note that for this example:

Write_ COUNTJ1:0]=00: Indicates that the FIFO is less than
1/4 full and corresponds to the occupancy range of (0:16).
The upper bound is 16 and not 15 due to the write latency of
1 clock cycle.

Write_ COUNTJ[1:0]=01: Indicates that the FIFO is between
1/4 full and 1/2 full and corresponds to the occupancy range
of (13:32). The lower bound is 13 and not 16 due to the read
latency of 3 clock cycles.

Write_ COUNT[1:0]=10: Indicates that the FIFO is between
1/2 full and 3/4 full and corresponds to the occupancy range
of (29-48).

Write_ COUNT[1:0]=11: Indicates that the FIFO is between
3/4 full and full and corresponds to the occupancy range of
(45-63).

If the control logic needs to throttle back write operations
based on the FIFO occupancy, it can use the write count
vector in the following way. As shown above,
WR_COUNT][1:0] equal to 11 corresponds to an occupancy
greater than 45. As long as the user's WR_COUNT is not
11, no more than 48 data words (47 plus one for the write
operation clock latency) are present in the FIFO. The user’s

2 www.Xxilinx.com
1-800-255-7778

DS232 (v0.2) March 28, 2003
Product Specification

http://www.xilinx.com

37 XILINX [R

Asynchronous FIFO v5.1

control logic is assured that at least 15 (63-48) additional
memory locations are available in the queue. There could
be up to three more locations because of recent read oper-
ations, but this only increases the available memory loca-
tions. In this scenario, at least 14 additional writes can be
performed without causing the FULL flag to transition to
true.

Alternatively the control logic might want to wait for a fixed
FIFO occupancy prior to performing a burst read operation.
In this case, read operations are suspended before the
appropriate count is reached. So for the same FIFO config-
uration, when the RD_COUNT transitions to 11, there are at

Table 1: Core Signal Pinout

least 47 data words in the FIFO. The write operation latency
means that there can be as many as 51 words in the FIFO,
but the user’s read logic is guaranteed that at least 47 words
are present. Read operations can be initiated with the
assurance that at least 47 assured reads can continue as
long as the EMPTY flag is inactive, indicating that data is
available.

Pinout

Core signal names are shown in Figure 1 and described in
Table 1.

Name Direction Description

DIN[N:0] Input Data Input

WR_EN Input Write Enable (request)

WR_CLK Input Clock for write domain operations (rising edge)

RD_EN Input Read Enable (request)

RD_CLK Input Clock for read domain operations (rising edge)

AINIT Input Asynchronous reset of all FIFO functions, flags, and pointers

FULL Output Full: no additional writes can be performed, synchronous to WR_CLK

ALMOST_ FULL Output Almost Full: only one additional write can be performed before FIFO is FULL,
synchronous to WR_CLK

WR_ Output Write Count: count vector (unsigned binary) representing the number of data

COUNT[W:0] words currently in FIFO, synchronized to WR_CLK. If 2*(W+1) < [FIFO depth
+1], the least significant bits of count are truncated. (W=0 produces a half-full
flag)

WR_ACK Output Write Acknowledge: handshake signal indicates that data was written to the
FIFO on the previous CLK edge while WR_EN was active

WR_ERR Output Write Error: handshake signal indicates that no data word was written to the
FIFO on the previous CLK edge while WR_EN was active. This is an indication
that a write operation was attempted, but the FIFO was Full.

DOUTI[N:0] Output Data Output: synchronous to RD_CLK

EMPTY Output Empty: no additional reads can be performed, synchronous to RD_CLK

ALMOST _EMPTY Output Almost Empty: only one additional read can be performed before FIFO is
EMPTY, synchronous to RD_CLK.

DS232 (v0.2) March 28, 2003
Product Specification

www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Asynchronous FIFO v5.1 2 XILINX it 7

Table 1: Core Signal Pinout (Continued)

Name Direction Description

RD Output

» Read Count: count vector (unsigned binary) representing the number of data
COUNT [R:0]

word currently in FIFO, synchronized to RD_CLK. If (2"R+1)<(FIFO depth+1),
the least significant bits of count are truncated (R=0, produces a half-full flag)

RD_ACK Output Read Acknowledge: handshake signal indicates that data was read from the
FIFO and placed on the DOUT output pins on the previous CLK edge while

RD_EN was active

RD_ERR Output Read Error: handshake signal indicates that no data word was read from the

FIFO on the previous CLK edge while RD_EN was active and subsequently data
on DOUT output pins was not updated. This is an indication that a read operation
was attempted, but the FIFO was Empty.

CORE Generator Parameters

The main Core Generator parameterization values can be
found in Table 2, and the parameter descriptions are as fol-
lows:

Component Name: The component name is used as
the base name of the output files generated for this
module. Names must begin with a letter and must be
composed from the following characters: a to z, 0 to 9
and “ "

Memory Type: Select the appropriate radio button for
the type of memory desired. Block Memory implements
the FIFO’s memory using SelectRAM+. Selecting the
Distributed Memory radio button will implement the
FIFO memory using LUT-based dual-port memory.

Input Data Width: Enter the width of the input data bus
(also the width of the output data bus). The valid range
is1-256.

FIFO Depth: Select the available depth from the
pull-down list. As one memory location has been
sacrificed in the interest of optimizing FIFO
performance available depths are (2*N —1). N can be
any integer from 4 to 16, with additional restrictions
based on the Data Width.

Data Count: Two Data Counts, one for each clock
domain, can be enabled by selecting the appropriate
radio button. Once selected, the corresponding count
width dialog box becomes active. Valid count widths
are any integer from 1 to N (where 2~N = (FIFO Depth
+ 1). If an integer greater than N is entered, it will turn
red and the core generation will be inhibited until this
error is corrected.

Create RPM: When this box is checked, the
Asynchronous FIFO will be generated using
Relationally Placed Macros (RPMs). This means that
the module will be generated with relative location
attributes attached. The FIFO will be produced with two
(or three, if distributed memory was selected) individual
RPMs. A single RPM is not produced to allow the FIFO
to support varying footprints.

Almost Full Flag: Generates an Almost Full signal,
indicating that one additional write can be performed
before the FIFO is full.

Almost Empty Flag: Generates an Almost Empty
signal, indicating that one additional read can be
performed before the FIFO is empty.

The optional handshaking control signals (acknowledge
and/or error) can be enabled via the Handshaking Options
button. When selected, a popup dialog box will appear.

Read Acknowledge Flag: Asserted active on the clock
cycle after a successful read has occurred. This signal,
when selected, can be made active high or low through
the GUIL.

Read Error Flag: Asserted active on the clock cycle
after a read from the FIFO was attempted, but not
successful. This signal, when selected, can be made
active high or low through the GUI.

Write Acknowledge Flag: Asserted active on the
clock cycle after a successful write has occurred. This
signal, when selected, can be made active high or low
through the GUI.

Write Error Flag: Asserted active on the clock cycle
after a write to the FIFO was attempted, but not
successful. This signal, when selected, can be made
active high or low through the GUI.

Parameter Values in XCO File

Names of XCO file parameters and their parameter values
are identical to the names and values shown in the GUI,
except that underscore characters (_) are used instead of
spaces. The text in an XCO file is case insensitive.

The format for the XCO file should be as follows:

CSET <parameter> = <desired_option>

For example:

CSET component_name = my_fifo_name

www.Xxilinx.com
1-800-255-7778

DS232 (v0.2) March 28, 2003
Product Specification

http://www.xilinx.com

FNLNX gt

Asynchronous FIFO v5.1

Figure 2 shows the waveform output of the VHDL behav-
ioral model for a FIFO with depth of 15. Initially, the FULL
and ALMOST_FULL output flags are high, indicating that
the FIFO is in a reset state and the user should not write to
the FIFO. When WR_EN is set to 1, the first write operation
fails and returns a WR_ERR because on that rising clock
edge the FIFO is reporting FULL and can not be written to.

AINIT

The WR_COUNT and RD_COUNT outputs in Figures 2
and 3 report an estimated value of the number of words in
the FIFO relative to their respective clock domains. These
outputs are expressed as the fraction of the FIFO that is full,
and can be used to generate user-threshold flags. Due to
delays in the core, these outputs can never be relied upon
as an exact measure of the number of words in the FIFO.

WR_CLK [

L L LTI

T LT LLL:

LUt

LI L

DIN 0 [J2 33 io

I

2 T (T I

T P I T

I I T

=0

WR_EN —
WR_ACK [

] S—
I S

il

WR_ERR 1

[L

FULL

ALMOST_FULL

WR_COUNT (@0 o700

101 1a 111

DOUT @ JERER TR

RD_EN

RD_ACK

RD_ERR

—
EMPTY

ALMOST_EMPTY [S

RD_CLK T UL
-
=
-
]

RD_COUNT 100

J(iE] 1o 5K

Figure 2: Timing Diagram of Read and Write Operations for FIFO VHDL Behavioral Model

Figure 3 shows the waveform output of the Verilog behav-
ioral model for a FIFO with depth of 15. Unlike the VHDL
model, it is a purely functional model. The actual waveform
of the Verilog model in Figure 3 looks quite different from the
VHDL waveform in Figure 2, but they are functionally equiv-

AINIT

alent from the point of view of either the read or write inter-
face of the FIFO. Because there is no delay in the Verilog
model, the effects of full, empty, read, or write can occur
instantaneously.

WR_CLK LT L L L L L L L L LT LIS

DING 1T |2 3 J0 11 22 T (T R IR (VI O T T ¢ (D S Y T ()
WREN [
WR_ACK [T 1 i |
WR_ERR L
FULL — | |
ALMOST_FULL — | |
WR_COUNT 0 K] (ol 101 10 ik
RO_CLK JTULUUUUUUUT U Uy iy i e
DOUT 1 Z B0 D
RD_EN 1
RD_ACK 1
RD_ERR [
EMPTY [1]
ALMOST EMPTY]
RD_COUNT 00 (T (1] 101] K]

Figure 3: Timing Diagram of Read and Write Operations for FIFO Verilog Behavioral Model

DS232 (v0.2) March 28, 2003
Product Specification

www.Xxilinx.com 5
1-800-255-7778

http://www.xilinx.com

Asynchronous FIFO v5.1

2 XILINX pogic 1

Table 2 shows the XCO file parameters and values, and summarizes the GUI defaults.

Table 2: Default Values and XCO File Values

Default GUI
Parameter XCO File Values Setting
component_name ASCII text starting with a letter and based upon the following character blank
set: a-z, 0-9, and _

memory_type Keyword block, anything else generates LUT RAM block
input_data_width Integer in the range 1 to 256 16
fifo_depth Integer in the range 15 to 65,535. Must be equal to (2*N-1;, N = 4 to 16) 63
almost_full_flag One of the following keywords: true, false false
almost_empty flag One of the following keywords: true, false false
write_acknowledge_flag One of the following keywords: true, false false
write_acknowledge_sense | One of the following keywords: active_high, active_low active_high
write_error_flag One of the following keywords: true, false false
write_error_sense One of the following keywords: active_high, active_low active_high
read_acknowledge_flag One of the following keywords: true, false false
read_acknowledge sense | One of the following keywords: active_high, active_low active_high
read_error_flag One of the following keywords: true, false false
read_error_sense One of the following keywords: active_high, active_low active_high
write_count One of the following keywords: true, false false
write_count_width Integer in the range 1 to N, where N is determined by the fifo_depth 2
read_count One of the following keywords: true, false false
read_count_width Integer in the range 1 to N, where N is determined by the fifo_depth 2
create_rpm One of the following keywords: true, false false

Core Resource Utilization

The resource requirements of the asynchronous FIFO are
highly dependent on the memory size, memory type, and
the presence of optional ports. Resource utilization can be
estimated by addition of the requirements for the FIFO'’s
memory and control logic.

Table 3 lists the number of SelectRAM+ blocks required for
the Virtex family to implement various width and depth com-
binations when using the block memory implementation.
Similarly, Table 4 lists the number of SelectRAM+ blocks
required for the Virtex-II family.

Table 5 shows the approximate number of slices per bit for a
distributed ram-based FIFO for the Virtex family. Multiply
this number by the data width to determine the approximate
slice count for the memory. Note that resource utilization for

distributed ram-based FIFO and control logic for Virtex-Il
will be similar to that show for Virtex.

Control logic resource utilization is a function of the required
addressing width N (N = log2(fifo_depth+1) and the optional
features enabled. The slice count calculation varies slightly,
depending on N being odd or even. For example, for the Vir-
tex family:

For N even, slice count is:

- (N*35)+6 (Base)

- +(N*05)+2 (per almost flag)

- +N*2.0)+1 (per data count)
-+ (for write handshaking)
-+ (for read handshaking))

6 www.xilinx.com
1-800-255-7778

DS232 (v0.2) March 28, 2003
Product Specification

http://www.xilinx.com

37 XILINX [R Asynchronous FIFO v5.1

For N odd, slice count is: -+ (for read handshaking))
- (N*35)+75 (Base) Example: a 1023x8 SelectRAM+ based FIFO with all of the
- +(N*05)+15 (per almost flag) features enabled requires 2 blockRAMs (see Table 3) and

~ +(N*2.0)+20 (per data count) an additional 99 slices (N=10) for the control logic.

-+ (for write handshaking) 41+7+7+21+21+1+1 = 99 slices (N=10)

Table 3: Virtex and Virtex-E Select Ram+ Usage

FIFO Depth
Data
Width 15 31 63 127 255 511 1023 | 2047 | 4095 | 8191 | 16383 | 32767 | 65535
1 1 1 1 1 1 1 1 1 1 2 4 8 16
2 1 1 1 1 1 1 1 1 2 4 8 16 32
3 1 1 1 1 1 1 1 2 3 6 12 24 48
4 1 1 1 1 1 1 1 2 4 8 16 32 64
5 1 1 1 1 1 1 2 3 5 10 20 40 80
6 1 1 1 1 1 1 2 3 6 12 24 48 96
7 1 1 1 1 1 1 2 4 7 14 28 56 112
8 1 1 1 1 1 1 2 4 8 16 32 64 128
9-12 1 1 1 1 1 2 3 5/6 9/12 18/24 36/48 72196 | 144/192
13-16 1 1 1 1 1 2 4 718 13/16 26/32 52/64 | 104/128 | 208/256
17-32 2 2 2 2 2 3/4 5/8 9/16 17/32 34/64 | 68/128 | 136/256 | N/S
33-40 3 3 3 3 3 5 9/10 17/20 33/40 66/80 | 132/160 | NIS N/S
41-48 3 3 3 3 3 6 11/12 21/24 41/48 82/96 | 164/192 | NIS N/S
49-64 4 4 4 4 4 7/8 13/16 25/32 49/64 | 98/128 | 196/256 | N/S N/S
65-128 5/8 5/8 5/8 5/8 5/8 9/16 17/32 33/64 | 65/128 | 130/256 | NIS N/S N/S
129-192 | 9/12 9/12 9/12 9/12 9/12 17/24 33/48 65/96 | 129/192 | NIS N/S N/S N/S
193-256 | 13/16 13/16 13/16 13/16 13/16 25/32 49/64 | 97/128 | 193/256 | N/S N/S N/S N/S
Table 4: Virtex-ll Select Ram+ Usage
FIFO Depth
Data
Width 15 31 63 127 255 511 | 1023 | 2047 | 4095 | 8191 16383 | 32767 | 65535
1 1 1 1 1 1 1 1 1 1 1 1 2 4
2 1 1 1 1 1 1 1 1 1 1 2 4 8
3 1 1 1 1 1 1 1 1 1 2 3 6 11
4 1 1 1 1 1 1 1 1 1 2 4 8 15
5 1 1 1 1 1 1 1 1 2 3 5 9 18
6 1 1 1 1 1 1 1 1 2 3 6 11 22
7 1 1 1 1 1 1 1 1 2 4 7 13 25
8 1 1 1 1 1 1 1 1 2 4 8 15 29
9-12 1 1 1 1 1 1 1 1/2 3 5/6 9/12 16/22 | 32/43
13-16 1 1 1 1 1 1 1 2 4 7/8 13/16 24/29 | 47/57
17-32 1 1 1 1 1 1 1/2 2/4 5/8 9/16 17/32 31/57 | NI/S
33-40 1/2 1/2 1/2 1/2 1/2 1/2 2/3 4/5 9/10 | 17/20 33/40 N/S N/S
41-48 2 2 2 2 2 2 3 5/6 11/12 | 21/24 41/48 N/S N/S
DS232 (v0.2) March 28, 2003 www.xilinx.com 7

Product Specification 1-800-255-7778

http://www.xilinx.com

Asynchronous FIFO v5.1

2 XILINX pogic 1

Table 4: Virtex-ll Select Ram+ Usage (Continued)

Data FIFO Depth
Width 15 31 63 127 255 511 | 1023 | 2047 | 4095 | 8191 16383 | 32767 | 65535
49-64 2 2 2 2 2 2 3/4 6/8 13/16 | 25/32 49/64 N/S N/S
65-128 2/4 2/4 2/4 2/4 2/4 2/4 4/8 8/15 | 17/32 | 33/64 65/128 N/S N/S
129-192 | 4/6 4/6 4/6 4/6 4/6 4/6 | 8/11 | 15/22 | 33/48 | 65/96 | 129/192 | NI/S N/S
193-256 | 6/8 6/8 6/8 6/8 6/8 6/8 | 11/15 | 22/29 | 49/64 | 97/128 | 193/256 | N/S N/S

Performance Benchmarking

To properly constrain the Asynchronous FIFO, place appropriate period constraints on the read (RD_CLK) and write
(WR_CLK) clocks. The Asynchronous FIFO benchmark results are shown in Table 6 for Virtex, Table 7 for Virtex-E, and
Table 8 for Virtex-II.

Table 5: Virtex Distributed RAM Resource Utilization

FIFO_depth Resources Used Slice Estimate
15 2/0/0/1 2
31 6/0/0/1 3
63 12/2/0/1 6
127 24/4/2/1 11
255 49/8/4/1 22

Notes:

1. Resource Utilization (LUT/MUXF5/MUXF6/FD) for Distributed RAM FIFO Memory Only (per bit, multiply by data width)

Table 6: Virtex Asynchronous FIFO Performance Benchmarking (SelectRAM+ Implementation)

PART FIFO Implementation
V50PQ240 255x16 no options 255x16 all options 1023X8 all options
-4 114 MHz - (8.8 ns) 113 MHz — (8.8 ns) 113 MHz — (8.8 ns)
-5 141 MHz — (7.1 ns) 125 MHz — (8.0 ns) 133 MHz - (7.5 ns)
-6 156 MHz — (6.4 ns) 151 MHz — (6.6 ns) 147 MHz - (6.8 ns)

Notes:

1. These benchmark designs contain only one FIFO without any additional logic, so benchmark numbers approach the performance
ceiling rather than representing performance under typical user conditions. Highest frequencies will be obtained by using the create
RPM option or through custom floorplanning.

2. Over constraining the FIFO (applying overly aggressive timing constraints) will degrade the achievable performance. For example,
applying a 6.0ns constraint to the 255x16 no options implementation (-6) will result in a placed and routed implementation that is
considerably slower than the 6.4ns shown in the table.

www.xilinx.com
1-800-255-7778

DS232 (v0.2) March 28, 2003

Product Spec

ification

http://www.xilinx.com

37 XILINX [R Asynchronous FIFO v5.1
Table 7: Virtex-E Asynchronous FIFO Performance Benchmarking (SelectRAM+ Implementation)
PART FIFO Implementation
V50EPQ240 255x16 no options 255x16 all options 1023X8 all options
-6 178 MHz — (5.6 ns) 174 MHz — (5.7 ns) 172 MHz — (5.8 ns)
-7 192 MHz — (5.2 ns) 188 MHz — (5.3 ns) 188 MHz - (5.3 ns)
-8 196 MHz — (5.1 ns) 192 MHz — (5.2 ns) 196 MHz - (5.1 ns)

Notes:

1. These benchmark designs contain only one FIFO without any additional logic, so benchmark numbers approach the performance
ceiling rather than representing performance under typical user conditions. Highest frequencies will be obtained by using the create

RPM option or through custom floorplanning.
2. Over constraining the FIFO (applying overly aggressive timing constraints) will degrade the achievable performance.

Table 8: Virtex-ll Asynchronous FIFO Performance Benchmarking (SelectRAM+ Implementation)

PART FIFO Implementation
2V250FG256 255x16 no options 255x16 all options 1023X8 all options
-5 233 MHz — (4.3 ns) 217 MHz — (4.3 ns) 213 MHz - (4.7 ns)

Notes:

1. These benchmark designs contain only one FIFO without any additional logic, so benchmark numbers approach the performance
ceiling rather than representing performance under typical user conditions. Highest frequencies will be obtained by using the create
RPM option or through custom floorplanning.

2. Over constraining the FIFO (applying overly aggressive timing constraints) will degrade the achievable performance.

3. Speed files used are preview.

Ordering Information

This core may be downloaded from the Xilinx IP_Center for use with the Xilinx CORE Generator System v5.2i and later. The
Xilinx CORE Generator System tool is bundled with all Alliance Series Software packages, at no additional charge.

To order Xilinx software, please visit the Xilinx Silicon Xpresso Cafe or contact your local Xilinx sales representative.

Information on additional Xilinx LogiCORE modules is available on the Xilinx IP_Center.

Revision History

The following table shows the revision history for this document.

Date Version

Revision

03/28/03 1.0 Revision History added to document.

www.xilinx.com 9
1-800-255-7778

DS232 (v0.2) March 28, 2003
Product Specification

http://www.xilinx.com/ipcenter
http://toolbox.xilinx.com/cgi-bin/xilinx.storefront/

http://www.xilinx.com/company/contact.htm
http://www.xilinx.com/ipcenter
http://www.xilinx.com

	Asynchronous FIFO v5.1
	Features
	Functional Description
	Synchronization and Timing Issues
	Behavior of Status Signals
	Pinout
	CORE Generator Parameters
	Parameter Values in XCO File
	Core Resource Utilization
	Performance Benchmarking
	Ordering Information
	Revision History

