
EECS150 Fall 2003 Checkpoint4

UCB 1 2003

UNIVERSITY OF CALIFORNIA AT BERKELEY
COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Fall 2003 Project
Checkpoint 4, Dummy Vector Overlay

1. Motivation

This is the fourth checkpoint for the Fall 2003 project.

• You will get used to our vector overlay unit
• You will display some dummy vectors on the screen

2. Objective

Use our VectorBlend module to display a 39 column by 29 row grid of dummy vectors on top of your full
motion video from checkpoint 2. You will need to generate a handful of signals to control the VectorBlend
unit properly, as well as connecting a few dipswitches and/or a counter to generate a pattern of dummy
vectors.

For the demo you will need to make two modes:

1. Display a 29x39 grid of identical vectors, the direction and intensity should be selectable by
dipswitches

2. Display a non-uniform grid of vectors. You should use some kind of counters to display all
possible combinations of direction and intensity (some may be duplicated). Note that the pattern
should not change from frame to frame.

3. Methodology

3.0 Block Diagram

ADV7185 ADV7194

Camera

Video
Decoder

Sync
FIFO

SDRAM
Control

SDRAM

Async
FIFO

Vector
Overlay

Video
Encoder

Vector
Bitmap
ROM

Monitor

Incoming Video
(Composite In Cable)

VD_CLOCK

Incoming Video

D
ec

im
at

ed
 V

id
eo

(N
o

B
la

nk
in

g)

D
ec

im
at

ed
 V

id
eo

(N
o

B
la

nk
in

g)

Control

RAM_CLOCK

Data

D
ec

im
at

ed
 V

id
eo

(N
o

B
la

nk
in

g)

D
ec

im
at

ed
 V

id
eo

(N
o

B
la

nk
in

g)

Fu
ll

E
nc

od
ed

 V
id

eo
IN

_B
LA

N
K

IN
G

D
ire

ct
io

n,
 In

te
ns

ity

B
itm

ap
 D

at
a

Outgoing Video

Outgoing Video
(S-Video and Composite Out Cables)

Vector Direction and Intensity

VD_CLOCK

VE_CLOCKVD_CLOCK

External Devices

On CaLinx Board

Xilinx VirtexE XCV2000E

Y5
VE_CLOCK

VE_CLOCK

EECS150 Fall 2003 Checkpoint4

UCB 2 2003

Given Modules:

• The VectorBlend vector blending module (and a few others in the same file) which will do all the
real work of this checkpoint

• Two bitmap ROMs made from blockRAM which contain the vector images
•

Modules You’ll Need:
• Everything from checkpoint3
• A counter to generate a test pattern of vectors

You will need to assemble these modules in some kind of sensible fashion according to the block diagram
above. Please read the module descriptions, and think carefully before you begin to write verilog. This
checkpoint can be completed in about 30min with 8 lines of verilog if you are lucky and remember how
your encoder works. Otherwise it should be easily doable during your lab section.

3.1 Vector Blender

Below is a table filled with the input and output signals from the vector blending unit:

Group Signal Bits Description
Direction 4 Direction of Vector to Display Vector to Display
Intensity 3 Intensity of Vector to Display
Row 4 Row of current vector

Col 3
Column of current vector (pixel
pair) Input from Encoder

Blanking 1 In blanking?
VideoIn 8 Video from encoder Video
VideoOut 8 Video to ADV7194

General Clock 1 VE_CLOCK_

 The Direction and Intensity signals are really quite simple, they select the direction of the arrow to
display and the intensity to display it at. There are 16 possible directions, some experimentation will show
you which is which. The arrows point in all directions with a 22.5° change between two neighboring
arrows. The intensity is a little more complex, there are 5 intensities (0, 1, 2, 3, 4 and 5. 6, 7, and 8 are all
treated the same as 5). As the intensity increases the arrow will fade in from nothing. That is when
intensity is 0, the arrow will not be visible, only the video, at 3 the output will consist of exactly half arrow
and half video and at 5 the video will be completely obscured by the arrow. This complicated alpha
blending is the reason we are giving you the VectorBlend module.

 The VideoIn and VideoOut busses should be self explanatory. The VideoIn should come from
your encoder and the VideoOut should go straight to the ADV7194 video encoder chip.
 Clock should be equally obvious.

 The Blanking signal should be used to disable the VectorBlend module. When Blanking is
asserted the VectorBlend module will not modify the incoming video stream (though it will delay it by a
few cycles). This should be used to prevent the VectorBlend module from destroying the sync data

EECS150 Fall 2003 Checkpoint4

UCB 3 2003

(FF,00,00,XX) that must be in the data stream. Without this signal the vector blend module might mix a
vector into a sync signal thereby corrupting the video stream.
 Note: Blanking will also be needed to disable the VectorBlend module while the borders of the
image are being transmitted. Because all of the 8x8 block motion kernels are slightly offset from the edge
of the screen (by 4 pixels @ 320x240) the VectorBlend unit should be disabled during these borders so as
not to display useless or random vectors.

 The final two signals: Row and Col are the most complicated. These two signals tell the
VectorBlend unit which pixel pair of the current vector should be displayed RIGHT NOW. Notice that
these values are in terms of actual video pixels NOT decimated 320x240 pixels. This means that there are
16 values for Row, even though the vectors are the same size as a kernel, because the kernels are 8x8 at
320x240 and the vectors are 16x16 at 640x480.
Caveats of Row and Col:

• Row must take the alternating fields into account, this means the lowest bit of the row will depend
on which field we are in.

• Row should depend primarily on VCOUNT (perhaps with an offset because VCOUNT might not
be 0 where we want Row to be 0)

• Remember to take blanking/borders into account properly.
• Col has only 3 bits, it corresponds to PIXEL PAIRS! A column corresponds to one 32bit pixel

pair of chroma and luma.
• Col should depend primarily on HCOUNT (perhaps with an offset because HCOUNT might not

be 0 where we want Col to be 0)
• Remember, both Row and Col might not use the least significant bits of HCOUNT and VCOUNT.

For example, the Col should not change every time a HCOUNT goes up by a byte.
• Remember that the vectors are not sequential! You will need to do the first row of pixels in the

first row of vectors, then the second row of pixels in the second row of vectors and so on.

3.2 Video Encoder

You will need to modify your video encoder SLIGHTLY. Changes:

• You will need to extract Row, Col and Blanking for use by the VectorBlend unit.

4 Where to Begin

Begin with your video encoder, you’ll need to modify this slightly to extract the needed signals. Notice
that even if the signals are not exactly right at first you should be able to see what you did wrong, since
you’ll still have video output to examine.

You will need to instantiate the VectorBlend module somewhere. You may put it inside your encoder or in
FPGA_Top, we don’t care.

Start by connection Direction and Intensity directly to the dipswitches. Once you can get a static pattern of
29x39 identical vectors to display on the video and you can change the vectors with dipswitches, then
switch to some kind of counter based scheme. This should not be needlessly complex, we just want to see
a 29x39 grid vectors with all 65 possible vectors showing in some kind of pattern so that we can see you
didn’t somehow hardcode the solution, and check that you can actually display different vectors at the same
time.

EECS150 Fall 2003 Checkpoint4

UCB 4 2003

5 Acknowledgements

Original Lab by Greg Gibeling

Checkpoint 4 Check-offs

Name: ___________________________

Name:___________________________

Lab Section: _____________________

1. Testbench and Simulation ______________ (20%)

2. Demo

 Uniform grid of 29x39 vectors ______________ (40%)

 Counter-Based vector pattern ______________ (40%)

Total _________ (%)

