

Name:____________________

EECS150: Components and Design Techniques for Digital Systems
University of California
Dept. of Electrical Engineering and Computer Sciences
	Mid Term 1
	Fall 2007

Last name: ___Answer________________
First name______Key_____________
Student ID: _________________________
Login: ____________________

Lab meeting time: ________________
TA's name: ____________________

You may use a single 8.5x11 sheet of notes.. No calculators! This booklet contains 9 numbered pages, including room to show your work. Please, no extra stray pieces of paper. Put your name on every page. The exam contains 5 substantive questions and 100 points, so just over 1 point per minute. Browse through the questions before you start. You have 1.5 hours, so relax, work thoughtfully and give clear answers. Good luck!

[image: image17.wmf]

A

0

A

1

A

2

Register

0

1

A

0

A

1

A

2

Register

0

1

A

0

A

1

A

2

Register

0

1

A

0

A

1

A

2

Register

0

1

Pad

0

Pad

1

Pad

2

Pad

3

I certify that my answers to this exam are my own work. If I am taking this exam early, I certify that I shall not discuss the exam questions, the exam answers, or the content of the exam with anyone until after the scheduled exam time. If I am taking this exam in scheduled time, I certify that I have not discussed the exam with anyone who took it early.

Signature: ______________________________________

	Problem 1 [15]
	

	Problem 2 [15]
	

	Problem 3 [20]
	

	Problem 4 [25]
	

	Problem 5 [25]
	

	Total [100]
	

[image: image18.png]Connection Diagram
N

B

Y &
T

Problem 1 [15]. The NAND gate is universal. In addition, the “7400” quad 2-input NAND chip that you used in Lab 0 is an extremely convenient building block. The connection diagram is shown below. For each of the following,
· Draw a schematic to show how the Boolean logic can be implemented using a single 7400.

· Label its wires with pin numbers to show how it can be implemented on a 7400.
1.a. 2-input AND gate
[image: image1.emf]1

2

3

4

5

6

1

2

3

4

5

6

1.b. 2-input OR gate
[image: image2.emf]1

2

3

12

13

11

4

5

6

1

2

3

12

13

11

4

5

6

1.c. 2-input XOR gate
[image: image3.emf]1

2

3

13

11

4

5

6

12

10

9

8

1

2

3

13

11

4

5

6

12

10

9

8

1.d. 2-input MUX
[image: image4.emf]1

2

3

12

11

4

5

6

13

10

9

8

A

B

S

1

2

3

12

11

4

5

6

13

10

9

8

A

B

S

1..e. Draw a CMOS transistor diagram for the AND gate in 1.a using six (6) transistors. How does this compare with the number of transistors in the NAND gate solution?
[image: image5.emf]A

B

out

A

B

out

A

B

out

A

B

out

Problem 2 [15]. You are given a FSM described by the following state transition diagram. Input i represents characters of the set {a, b, c, d}. All unspecified input conditions keep the machine in the same state.
[image: image6.emf]Start/0 S

1

/0

“b”

~“b”

S

2

/0

~“a” & ~“d”

“b”

S

3

/1

“d”

“a”

reset

Start/0 S

1

/0

“b”

~“b”

S

2

/0

~“a” & ~“d”

“b”

S

3

/1

“d”

“a”

reset

2.a. Explain in words what this FSM does.

Discards input through the first “b”, then checks for “ba*d”, where a* is zero or more “a”.
2.b. Using the state encoding (start=00, S1=01, S2=10, S3=11) and inputs (“a”=00, “b”=01, c=”10”, d=”11) write down the concrete state transition table and give a Boolean expression for the next state and the output.
	s1
	s0
	I1
	I0
	
	
	Ns1
	Ns0
	0ut

	0
	0
	0
	0
	a
	
	0
	0
	0

	
	
	0
	1
	b
	
	0
	1
	0

	
	
	1
	X
	cd
	
	0
	0
	0

	0
	1
	0
	0
	a
	
	0
	1
	0

	
	
	0
	1
	b
	
	1
	0
	0

	
	
	1
	X
	cd
	
	0
	1
	0

	1
	0
	0
	0
	a
	
	1
	0
	0

	
	
	0
	1
	b
	
	0
	1
	0

	
	
	1
	0
	c
	
	0
	1
	0

	
	
	1
	1
	d
	
	1
	1
	0

	1
	1
	X
	X
	
	
	0
	1
	1

Ns1 = ~s1* s0*~I1* I0 +
 s1*~s0*~I1*~I0 +
 s1*~s0* I1* I0
Ns0 = ~s1*~s0*~I1* I0 +
 ~s1* s0*~I1* ~I0 +
 ~s1* s0* I1 +
 s1*~s0* I1 + s1*~s0*I0 + s1*s0

Out = s1*s0
2.c. Draw a symbolic state transition diagram for a Mealy machine that performs the same function but uses fewer states.
[image: image7.emf]Start S1

“b”/0

~“b”/0

S2

~“a” or ~“d”/0

“b”/0

“d”/1

“a”/0

reset

Start S1

“b”/0

~“b”/0

S2

~“a” or ~“d”/0

“b”/0

“d”/1

“a”/0

reset

Problem 3 [20]. For the Boolean function specified by the truth table below:

	A
	B
	C
	
	F

	0
	0
	0
	
	1

	0
	0
	1
	
	0

	0
	1
	0
	
	0

	0
	1
	1
	
	0

	1
	0
	0
	
	1

	1
	0
	1
	
	1

	1
	1
	0
	
	1

	1
	1
	1
	
	0

3.a. Give a Boolean expression for F in canonical sum of products (SoP) form.

F = ~A*~B*~C + A*~B*~C + A*~B*C + A*B*~C
3.b. Give a Boolean expression for F in canonical product of sums (PoS) form.

F = (A+B+~C) * (A+~B+C) * (A+~B+~C) *(~A+~B+~C)
3.c. Draw the kmap for F and use it to minimize your sum of products form. Identify the essential prime implicant(s).
[image: image8.emf]A

BC

00 01 11 10

A

BC

00 01 11 10

1

1 1 1

F = A*~B + A*~C + ~B*~C
All three prime implicants are essential
3.d. Complete the following module with a structural verilog description of your circuit.

module ZOOP (f, a, b, c);
input a,b,c;
output f;

assign f = (a & ~b) | (a & ~c) | (~b & ~c);

endmodule
Problem 4 [25]. The following shows the circuit diagram for a simple 3-bit pseudo-random counter.
[image: image9.emf]D Q D Q D Q

i2

i1 i0

c2

c1 c0

clk

D Q D Q D Q

i2

i1 i0

c2

c1 c0

clk

[image: image20.emf]idle

start_active

start_30s, AC_on

active

AC_on

start_test

start_30s, AC_on

test

AC_on

motion & ~daylight test

fired_5m

fired_30s

test

motion &

~daylight

test

idle

start_active

start_30s, AC_on

active

AC_on

start_test

start_30s, AC_on

test

AC_on

motion & ~daylight test

fired_5m

fired_30s

test

motion &

~daylight

test

4.a. Complete the State Transition Table for this counter and draw the complete State Transition Diagram.
[image: image21.emf]state test fire5m detec fire30 next ACon St30 St5

idle 0 x 0 x idle 0 0 0

0 x 1 x StAc = = =

1 x x x StTst = = =

StAc x x x x act 1 1 0

act 0 0 0 x act 1 0 0

0 0 1 x StAc = = =

0 1 x x idle = = =

1 x x x StTst = = =

StTst x x x x Tst 1 0 1

Tst 0 0 x x Tst = = =

0 1 x x idle = = =

1 x x x StTst = = =

state test fire5m detec fire30 next ACon St30 St5

idle 0 x 0 x idle 0 0 0

0 x 1 x StAc = = =

1 x x x StTst = = =

StAc x x x x act 1 1 0

act 0 0 0 x act 1 0 0

0 0 1 x StAc = = =

0 1 x x idle = = =

1 x x x StTst = = =

StTst x x x x Tst 1 0 1

Tst 0 0 x x Tst = = =

0 1 x x idle = = =

1 x x x StTst = = =

	C2
	C1
	C0
	
	I2
	I1
	I0

	0
	0
	0
	
	0
	0
	0

	0
	0
	1
	
	1
	0
	0

	0
	1
	0
	
	1
	0
	1

	0
	1
	1
	
	0
	0
	1

	1
	0
	0
	
	0
	1
	0

	1
	0
	1
	
	1
	1
	0

	1
	1
	0
	
	1
	1
	1

	1
	1
	1
	
	0
	1
	1

4.b. Using the following timing parameters and assuming zero clock skew, determine the maximum logic propagation delay available for this counter to operate at 2 GHz.
	Flip-Flop
	Clk-to-Q
	D-to-Q
	Setup Time
	Hold Time

	
	100 ps
	25 ps
	75 ps
	30 ps

Available = 500 ps – 100 ps – 75 ps = 325 ps
4.c. Assuming the XOR gate has a propagation delay of 50 ps, draw the waveform showing the timing for this counter [from state 001]. Label the delays assuming a 300 ps clock period.
[image: image11.emf]clk

C0

C1

C2

100ps

clk

C0

C1

C2

clk

C0

C1

C2

100ps

4.d. Modify the circuit diagram on the previous page to make the counter self-starting.

4.e. Complete the verilog model for your counter, as modified in 4.d.
module randctr (c[2,0], clk);

input clk;
output [2:0]c;

always @ (posedge clk)
 if (c = 0) c <= 3’b100;
else
 begin
 c[0] < = c[1];
 c[1] < = c[2];

 c[2] < = c[0] ^ c[1];
 end

endmodule
4.f. Implement the counter on simplified FPGA blocks. Shown below is an example CLB from an FPGA filled in to implement a NAND gate. Notice that not only is the 3-LUT filled in, but the control bit for the MUX is set.

[image: image13.emf]1

1

1

1

1

1

1

0

000

A

2

A

1

A

0

111

A0

A1

A2

Register

0

1

0

NAND Gate in an FPGA CLB

In this problem you must implement your pseudo-random counter in the simplified FPGA below. Fill in the white boxes with either 1 or 0 to indicate both the programming of the 3-LUTs and the mux control bits. Indicate connected wires in the interconnect with an X, as with PLAs.

In addition to configuring the CLBs you must make sure to route all the signals you use and to configure the four I/O pads at the top.

Each signal which must connect to the outside world must be connected to an I/O pad. The four bits of the counter “C3C2C1C0”are the only outputs. In the white I/O pad box, write in the name of the signal connected to it. Each I/O pad would be connected to a pin on an FPGA chip.

[image: image22.emf]000

001

100

010

101

110

111

011

000 000

001 001

100 100

010 010

101 101

110 110

111 111

011 011

Problem 5 [25]. In this problem you will design a motion-based light controller shown in the diagram below. The wall switch is normally left in the ON position, supplying power to the controller and the light. The normal behavior of this controller is to turn the light ON for 30 seconds after motion is detected, but only if it is dark out. In addition, there is an test mode where if the test is activiated it turns the light on for 5 minutes, regardless of daylight or motion.

Your controller has two digital inputs based on the photocell and passive infrared sensors: daylight and motion and a user input test. It has an output AC_on that controls a relay to actually turn the light on and off. It has three preset timers, each with a start control point and a fired signal.
[image: image15.emf]Timer_30s

start_30s

fired_30s

Timer_5m

start_5m

fired_5m

daylight

motion

Controller

AC_on

relay

Light

test

Wall switch

Timer_30s

start_30s

fired_30s

Timer_30s

start_30s

fired_30s

Timer_5m

start_5m

fired_5m

Timer_5m

start_5m

fired_5m

daylight

motion

Controller

AC_on

relay

Light

test

Wall switch

5.a. Give the symbolic state transition diagram for your FSM controller.

5.b. Give a symbolic state transition table.

[image: image23.emf]

5.c. Implement your controller as a behavioral verilog module where the encoding of each of the inputs, outputs, and states is specified in parameter statements. (It MUST have two always blocks!)

parameter …
module LightCtrl(clk, test, daylight, motion, AC_on, start30, fire30, start5, fire5)
 input clk, test, daylight, motion, fire30, fire5;

 output AC_on, start30, start5;

 reg state, nextstate;
 wire detect;

 assign detect = motion & ~daylight;
 always @ (*)
 case (state)

 idle:
 AC_on = 0; start30=0; start5=0;
 if (test) nextstate = start_test;

 else if (detect) nextstate = start_active;
 start_test:
 start5=1; AC_on=1; nextstate=test;
 test:

 AC_on =1; start5=0;
 if (fire5) nextstate = idle;
 else if (test) nextstate = start_test;
 start_active:
 start30=1; AC_on=1; nextstate=active;
 active:
 AC_on =1; start30=0;
 if (test) nextstate = start_test
 else if (detect) nextstate = start_active;
 else if (fire30) nextstate = idle;
 end

 always @(posedge clk)

 begin

 start <= nextstate;

 end

endmodule[image: image16.emf]

8

2

1

xor

0

1

1

0

0

1

0

1

1

2

1

1

1

c2

c1

c0

6

5

4

11

13

12

3

EECS150 FA07
Mid I
Page 9 of 9

_1158256666.vsd
1

1

1

1

1

1

0

1

000
A2A1A0

111

A0

A1

A2

Register

0

0

1

NAND Gate in an FPGA CLB

_1158257361.vsd
A0

A1

A2

Register

0

1

A0

A1

A2

Register

0

1

A0

A1

A2

Register

0

1

A0

A1

A2

Register

0

1

Pad0

Pad1

Pad2

Pad3

