

Name:____________________

EECS150: Components and Design Techniques for Digital Systems
University of California
Dept. of Electrical Engineering and Computer Sciences
	Mid Term 2
	Fall 2007

Last name: ____Solutions___________
First name_______________________

Student ID: _________________________
Login: ____________________

Lab meeting time: ________________
TA's name: ____________________

You may use a single 8.5x11 sheet of notes.. No calculators! This booklet contains 7 numbered pages, including room to show your work. Please, no extra stray pieces of paper. Put your name on every page. The exam contains 7substantive questions and 100 points, so just over 1 point per minute. Browse through the questions before you start. You have 1.5 hours, so relax, work thoughtfully and give clear answers. Good luck!

[image: image4..pict]
I certify that my answers to this exam are my own work. If I am taking this exam early, I certify that I shall not discuss the exam questions, the exam answers, or the content of the exam with anyone until after the scheduled exam time. If I am taking this exam in scheduled time, I certify that I have not discussed the exam with anyone who took it early.

Signature: ______________________________________

	
	Score
	Count

	Problem 1 [10]
	
	

	Problem 2 [10]
	
	

	Problem 3 [15]
	
	

	Problem 4 [15]
	
	

	Problem 5 [15]
	
	

	Problem 6 [15]
	
	

	Problem 7 [20]
	
	

	Total [100]
	
	

Problem 1. (10) Number Representation
For each of the following, what is the value represented by the 8-bit binary pattern 11111000? Also, give the binary representation for its negative.

	Number System
	Decimal Value of 11111000
	Bit representation of its negative

	Two’s complement
	-8
	00001000

	Unsigned

	248
	None

	One’s complement

	-7
	00000111

	Excess 127

	121
	00000110

	Two’s complement fixed point with the binary point in the middle of the 8 bits
	-0.5
	00001000

Problem 2. (10) Floating Point
Draw a line matching each occurrence in the left column to the conditions in the right column that best describes when it can occur.

	Occurrence
	
	Conditions

	addition of two normalized floating point numbers results in a DENORM?
	
	Two numbers

	multiplication of two normalized floating point numbers results in a DENORM
	
	Two numbers of small magnitude

	addition of two normalized floating point numbers result in an overflow
	
	Two numbers of large magnitude

	multiplication of two normalized floating point numbers result in an overflow
	
	Two numbers of small magnitude and opposite sign

	
	
	Two numbers of large magnitude and opposite sign

	
	
	Two numbers of opposite sign and a difference of small magnitude

	
	
	Two numbers of opposite sign and a difference of large magnitude

Problem 3. (15) Logic
1. Prove (by drawing a simple diagram) that any logic function can be implemented using full adder cells.

A
B
0

 AB

0
 1

 NAND(A,B)
2. How would you build an 8-bit parity circuit using a small number of FAs?

In[0]
In[1]
In[2]
In[3]
In[4]
In[5]
 In[6]
 In[7]
 0

.

Problem 4 (15). Circuit Delays

Determine the maximum clock rate for the circuit shown below. Assume the following:

(1) The primitive inverter delay is 100 ps. All wire delays are 0.

(2) The primitive delay of each gate is the number specified inside the gate. It is in units of primitive inverter delays.

(3) The actual delay of a gate in the circuit is a linear function of its primitive gate delay and its fanout: Actual delay = primitive delay + 0.25 * (# of fanouts more than 1)
a. Any logic gate, flip-flop or output port counts as one fanout of a gate. For example, the XOR gate in the circuit below has a fanout of 2.

b. Flip-flop outputs incur fanout-related delays, just like gates.
(4) Flip-flop setup time and clock-to-Q time are each 2 inverter delays.

(5) The maximum skew between any two clock inputs is 100 ps.

State clearly any other assumptions you make. Show your work.

[image: image1.wmf]

The critical path is shown on the diagram above

Min Period
= (Clk-to-Q + (FF-fanout + (XOR + (NAND + (NOR + (Setup + (max-skew =

= 200ps + 25ps + (3 + 0.25(2-1))*100ps +

(2 + 0.25(2-1))*100ps + 2*100ps + 200ps + 100ps

= 225ps + 325ps + 225ps + 200ps + 200ps +100ps = 1275ps

max frequency = 1/min period = 784 MHz

Problem 5 (15). Often in hardware design it is possible to produce optimized circuits for special cases that are faster or more compact than that for the general case.
1. Construct a compact, low delay circuit for a 16-bit “times 14” using adders and/or carry-save adders.

2. Show how to improve your circuit by using one or more subtractor.

1. Result = A*8 + A*4 + A*2 = A||000 + A||00 + A||0

2. Result = A*16 – A*2 = A||0000 – sx(3)||A||0
[image: image2.emf]

Problem 6. (15). Memory

Describe each of the steps involved in a DRAM write operation. (We are looking for a single brief sentence or two for each major step.)

· Prior to the write, OE_l and WE_l are disasserted (OE_l = 1, WE_l = 1) and the DRAM chip is essentially inactive.

· Drive Row Address; then assert RAS

· Drive Data; then asset WE_L

· Drive Col address; then assert CAS (for late, reverse these)

· Deassert WE_L, CAS, RAS
Problem 7 (20). Debugging verilog

Find and correct 6 errors in the verilog modules below. Additional errors count for 1 point of extra credit each. The exact function of the FSM is not important – the errors are basic and common.

module ShiftRegister(Clock, Reset, SIn, POut);

input

Clock, SIn, Reset;

output reg
[7:0]
POut;

always @ (posedge Clock)

if (Reset)

POut <= 8’b0;

POut <=
{POut[6:0], SIn};

endmodule

module FSM(In, Out, OutValid, Clock, Reset);

input

In, Clock, Reset;

output reg
[7:0]
Out;

output

OutValid;

reg

CurrentState, NextState;

reg

ShiftReset, OutValid;

ShiftRegister
Shifter(Clock, ShiftReset, Out, In,);

parameter
STATE_Idle =

1'b0,

STATE_A =

1'b1,

always @ (posedge Clock) begin

if (Reset)
CurrentState <=

STATE_Idle;

else

CurrentState <=

NextState;

end

always @ (CurrentState, Sin, Out) begin

case (CurrentState)

STATE_Idle: begin

if (In) begin

NextState =

STATE_A;

ShiftReset =
1'b1;

end

else begin

NextState =
CurrentState;

ShiftReset =
1’b0;

end

OutValid =

1’b0;

end

STATE_A: begin

if (~Out[7]) begin

NextState =

STATE_A;

OutValid =

1'b1;

end

 else begin

NextState =

STATE_Idle;

OutValid =

1'b0;

 End

ShiftReset =
1'b0;

end

endcase

end

endmodule[image: image3.emf]

8

A	B	Cin

S	Cout

A	B	Cin

S	Cout

Parity

Parity is just the XOR of all input bits which can be obtained by using the Sum outputs from the FA’s

Since all combinational logic can be made out of NAND gates, showing a NAND constructed of FAs is sufficient. Answers that constructed all 3 primitives AND, OR and NOT were also acceptable.

A	B	Cin

S	Cout

A	B	Cin

S	Cout

A	B	Cin

S	Cout

A	B	Cin

S	Cout

EECS150 FA07
Mid II
Page 2 of 7

_1129365884.doc

D

Q

D

Q

D

Q

D

Q

D

Q

1

2

2

3

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

1

2

2

3

