Homework 7

Problem 1

NAND
ABA NAND AA NAND B (A NAND B)'A' NAND B'
0011 00
0111 01
1001 01
1100 11
A' A AND BA OR B
A NAND A is A', and from DeMorgan's law,
A NAND B = (AB)' = A' + B' ==> (A'B')' = A'' + B'' = A + B

The table above shows that you can form AND, OR, and NOT from NAND. Tha's sufficient, since all boolean expressions are formed using these operators.

NOR
ABA NOR AA NOR B (A NOR B)'A' NOR B'
0011 00
0110 10
1000 10
1100 11
A' A OR BA AND B
A NOR A is A', and from DeMorgan's law,
(AB)' = A' + B' ==> ((AB)')' = AB = (A' + B')' = A' NOR B'

The table above shows that you can form AND, OR, and NOT from NOR.

AND
ABA AND AA AND B
0000
0100
1010
1111
Here, clearly AND is not a complete set. There is no way to generate the complement or the OR function.

XOR
ABA XOR 1A XOR B
0010
0111
1001
1100
A'
Even though we can form A' with XOR, we can't do any more. It is impossible to produce the OR or AND functions.

Problem 2

A1 B1 A0 B0 Ci | Co S1 S0
---------------+---------
 0  0  0  0  0 |  0  0  0
 0  0  0  0  1 |  0  0  1
 0  0  0  1  0 |  0  0  1
 0  0  0  1  1 |  0  1  0

 0  0  1  0  0 |  0  0  1
 0  0  1  0  1 |  0  1  0
 0  0  1  1  0 |  0  1  0
 0  0  1  1  1 |  0  1  1

 0  1  0  0  0 |  0  1  0
 0  1  0  0  1 |  0  1  1
 0  1  0  1  0 |  0  1  1
 0  1  0  1  1 |  1  0  0

 0  1  1  0  0 |  0  1  1
 0  1  1  0  1 |  1  0  0
 0  1  1  1  0 |  1  0  0
 0  1  1  1  1 |  1  0  1

 1  0  0  0  0 |  0  1  0
 1  0  0  0  1 |  0  1  1
 1  0  0  1  0 |  0  1  1
 1  0  0  1  1 |  1  0  0

 1  0  1  0  0 |  0  1  1
 1  0  1  0  1 |  1  0  0
 1  0  1  1  0 |  1  0  0
 1  0  1  1  1 |  1  0  1

 1  1  0  0  0 |  1  0  0
 1  1  0  0  1 |  1  0  1
 1  1  0  1  0 |  1  0  1
 1  1  0  1  1 |  1  1  0

 1  1  1  0  0 |  1  0  1
 1  1  1  0  1 |  1  1  0
 1  1  1  1  0 |  1  1  0
 1  1  1  1  1 |  1  1  1

Sum of Products

S0 = A1'B1'A0'B0'Ci + A1'B1'A0'B0Ci + A1'B'1A0B0'Ci' + A1'B1'A0B0Ci +
     A1'B1A0'B0'Ci + A1'B1A0'B0Ci' + A1'B1A0B0'Ci' + A1'B1A0B0Ci +
     A1B1'A0'B0'Ci + A1B1'A0'B0Ci' + A1B1'A0B0'Ci' + A1B1'A0B0Ci +
     A1B1A0'B0'Ci + A1B1A0'B0Ci' + A1B1A0B0'Ci' + A1B1A0B0Ci

S1 = A1'B1'A0'B0Ci + A1'B1'A0B0'Ci + A1'B1'A0B0Ci' + A1'B1'A0B0Ci +
     A1'B1A0'B0'Ci' + A1'B1A0'B0'Ci + A1'B1A0'B0Ci' + A1'B1A0B0'Ci' +
     A1B1'A0'B0'Ci' + A1B1'A0'B0'Ci + A1B1'A0'B0Ci' + A1B1'A0B0'Ci' +
     A1B1A0'B0Ci + A1B1A0B0'Ci + A1B1A0B0Ci' + A1B1A0B0Ci

Co = A1'B1A0'B0Ci + A1'B1A0B0'Ci + A1'B1A0B0Ci' + A1'B1A0B0Ci +
     A1B1'A0'B0Ci + A1B1'A0B0'Ci + A1B1'A0B0Ci' + A1B1'A0B0Ci +
     A1B1A0'B0'Ci' + A1B1A0'B0'Ci + A1B1A0'B0Ci' + A1B1A0'B0Ci +
     A1B1A0B0'Ci' + A1B1A0B0'Ci + A1B1A0B0Ci' + A1B1A0B0Ci

Product of Sums

S0 = (A1 + B1 + A0 + B0 + Ci) * (A1 + B1 + A0 + B0' + Ci') * 
     (A1 + B1 + A0' + B0 + Ci') * (A1 + B1 + A0' + B0' + Ci) * 
     (A1 + B1' + A0 + B0 + Ci) * (A1 + B1' + A0 + B0' + Ci') * 
     (A1 + B1' + A0' + B0 + Ci') * (A1 + B1' + A0' + B0' + Ci) * 

     (A1 + B1' + A0' + B0' + Ci') * (A1' + B1 + A0 + B0' + Ci') * 
     (A1' + B1 + A0' + B0 + Ci') * (A1' + B1 + A0' + B0' + Ci) * 
     (A1' + B1' + A0 + B0 + Ci) * (A1' + B1' + A0 + B0' + Ci') * 
     (A1' + B1' + A0' + B0 + Ci') * (A1' + B1' + A0' + B0' + Ci) 

S1 = (A1 + B1 + A0 + B0 + Ci) * (A1 + B1 + A0 + B0 + Ci') * 
     (A1 + B1 + A0 + B0' + Ci) * (A1 + B1 + A0' + B0 + Ci) * 
     (A1 + B1' + A0 + B0' + Ci') * (A1 + B1' + A0' + B0 + Ci') * 
     (A1 + B1' + A0' + B0' + Ci) * (A1 + B1' + A0' + B0' + Ci') * 

     (A1' + B1 + A0 + B0' + Ci') * (A1' + B1 + A0' + B0 + Ci') * 
     (A1' + B1 + A0' + B0' + Ci) * (A1' + B1 + A0' + B0' + Ci') * 
     (A1' + B1' + A0 + B0 + Ci) * (A1' + B1' + A0 + B0 + Ci') * 
     (A1' + B1' + A0 + B0' + Ci) * (A1' + B1' + A0' + B0 + Ci) 

Co = (A1 + B1 + A0 + B0 + Ci) * (A1 + B1 + A0 + B0 + Ci') * 
     (A1 + B1 + A0 + B0' + Ci) * (A1 + B1 + A0 + B0' + Ci') * 
     (A1 + B1 + A0' + B0 + Ci) * (A1 + B1 + A0' + B0 + Ci') * 
     (A1 + B1 + A0' + B0' + Ci) * (A1 + B1 + A0' + B0' + Ci') * 

     (A1 + B1' + A0 + B0 + Ci) * (A1 + B1' + A0 + B0 + Ci') * 
     (A1 + B1' + A0 + B0' + Ci) * (A1 + B1' + A0' + B0 + Ci) * 
     (A1' + B1 + A0 + B0 + Ci) * (A1' + B1 + A0 + B0 + Ci') * 
     (A1' + B1 + A0 + B0' + Ci) * (A1 + B1' + A0' + B0 + Ci)

Problem 3

S0 = A0'B0' + A0B0
S1 = A1'B1'B0 + A1'B1'A0 + A1B1B0 + A1B1A0
(Not unique)
Co = A1B1 + B1B0 + B1A0 + A1B0 + A1A0

Problem 4

Katz 2.7

Katz 2.10