10/11 & 10/13

CS150

Section week 7

Reflections, ROM based FSMs,

1. Transmission lines

The theory behind transmission lines is that long wires are not ideal; they actually create a complex system of resistance, capacitance and inductance and we call a long wire that has these traits a transmission line. Unlike signals travelling through very short wires (for which we don’t need to consider propogation time), signals on transmission lines take a finite time period to travel from one end to the other. The duration is fundamentally limited by the speed of light through the medium which, in the case of wires, is generally given as about ____________ which means a signal travels _______ meters in a ns.

Rs = Source resistance

Zo = Characteristic impedance

RL = Load resistance

How long would it take for a signal to propogate through this transmission line?

The standard equation for the calculating reflection coefficient is (=

Travelling from left to right on this line, (L =

(Reflection from load)

Travelling from right to left on this line, (S =

(Reflection from source)

Draw the voltage values at time 2.5ns, 7.5ns, 12.5ns when:

RL = 2 Ohm

RS = 18 Ohms

Zo = 6 Ohms

V0 = 0V

Vwave = +10V

Rule of thumb:

Time for a given signal to travel down a transmission line should

be less than _________ its rise time in order to avoid reflections.

Example: What should the minimum rise time be for a signal in

the transmission line shown above in order to avoid serious reflection?

2. Types of FSMs

What methods of implementing logic have we seen so far?

Type

Strong points

Weak points

a.

1. Good for small designs

1. Hard to debug

Gates

2. Can control details of implementation

2. Hard to make changes

(But the compiler may compile them away)
3. Uses lotsa LUTs

b.

1. Easy to change

1. Wastes resources for more

Decoder
2. Minimal external logic

than 4 or 5 inputs

3. Shares results of AND level of logic

c.

1. Good for mostly sequential-state FSMs
1. Bad for circuits that jump

Jump /

2. Logic mostly done for you

around between states alot

Counter

d.

1. Saves LUTs

1. Uses FFs

One-hot
2. Good for sequential-state FSMs

2. Error recovery difficult

Encoding

e.

1. Easy to change

1. Wastes space for tables with a

ROM

2. No logic

 lot of don’t cares.

2. Each new input increases the size by 2

Microprocessor

ROMs:

Where can a ROM be used in a FSM?

Let’s say we knew the following about a FSM:

Q1
Q0
IN
NS1
NS0
OUT1
OUT0__

0
0
0
0
0
1
0

0
0
1
1
1
1
0

0
1
0
0
1
1
0

0
1
1
0
1
0
1

1
0
0
1
1
1
1

1
0
1
1
0
0
0

1
1
0
1
0
1
1

1
1
1
0
1
0
1

OK. Implement the above table in 8x1 ROMs.

Step 1: Figure out what goes in each ROM:

 Data Input(Address):
111
110
101
100
011
010
001
000
Hex

How many CLBs would it take to implement this logic with ROMs?

Does it make any difference in the number of CLBs that you need to use if you combine NS & OUT into one ROM?

Cumulative

Values on wire

KEY:

Each 8x1 ROM has 3 inputs. Any 3 input 1 output function can be implemented in ½ a CLB. And, since there are four 8x1 ROMs necessary to implement this logic, the total number of CLBs neede is:

1/2 CLB * 4 = 2 CLBs.

RL

L=1m

2.5V			5V

10V			5V

10V			0V

5V

It will still take the same number of bits so it wouldn’t change the number of ROMs necessary for implementation. For a better explanation of how to calculate the number of CLBs necessary for various circuits, please come to office hours...

V0 + 10V	 V0

(S

-5V

5V

0V

10V

V0+10V+10V*(L

+10V*(L*(S

V0+10V+10V* (L

Xilinx library ROM component INIT attribute value.

10V * (L * (S=-2.5V

10V * (L= -5V

2.5ns

NS1		0	1	1	1	0	0	1	0	0x72

NS0		1	0	0	1	1	1	1	0	0x9E

OUT1		0	1	0	1	0	1	1	1	0x57

OUT0		1	1	0	1	1	0	0	0	0xD8

New wave (Reflection)

Wave direction

Anywhere you can use any other kind of logic

2.5ns

7.5ns

12.5ns

-5V

Rs

5V

0V

10V

-5V

(S

5V

0V

10V

4*Propogation Time (TRISE

4*5ns = 20ns < TRISE

1/4

(L = (2(- 6()/(2(+ 6() = -1/2

(S = (18(- 6()/(18(+ 6() = 1/2

RL –Z0

RL + Z0

RS –Z0

RS + Z0

5 ns

V0+10V+10V*(L

V0 + 10V	

0.2m

2x108m/s

0V

TRISE

Zo

V

