College of Engineering
Department of Electrical Engineering and Computer Sciences

EECS 150 - FINAL EXAM

Thursday, 9 December 1999, 12:30-3:30 p.m.

Name: \qquad ID\#: \qquad

- Closed book. No notes. No calculators.
- There are 6 problems worth 100 points total. There is little room for partial credit-it's better to do half the test carefully than to do the entire test sloppily.

Problem	Points	Your Score
1	14	
2	6	
3	25	
4	28	
5	15	
6	12	
Total	$\mathbf{1 0 0}$	

In the real world, unethical actions by engineers can cost money, careers, and lives. The penalty for unethical actions on this exam will be a grade of F in EECS150 and a letter will be written to the Department Chair and to the Office of Student Conduct.
[4 pts.] a) Find the minimal sum-of-products form for $Y=\sum(3,6,7,8,9,10,11,15)$ using variables $A_{3} A_{2} A_{1} A_{0}$. (For example, minterm $3=\bar{A}_{3} \bar{A}_{2} A_{1} A_{0}$. .)

$$
Y=
$$

[4 pts.] b) Find the minimal product-of-sums form for $Y=\sum(3,6,7,8,9,10,11,15)$ using variables $A_{3} A_{2} A_{1} A_{0}$. (For example, For example, minterm $\left.3=\bar{A}_{3} \bar{A}_{2} A_{1} A_{0}.\right)$

$$
Y=
$$

[6 pts.] c) State minimization. For the following state table, determine which states are equivalent.

Present State	Input	Output	Next State
S0	0	0	S0
S0	1	0	S1
S1	0	1	S0
S1	1	1	S1
S2	0	0	S2
S2	1	0	S3
S3	0	1	S2
S3	1	1	S3
S4	0	0	S2
S4	1	0	S0
S5	0	0	S0
S5	1	0	S2
S6	0	0	S4
S6	1	0	S5

Problem 2 (6 points)

You are given a 200 -meter length of cable with impedance 50 ohms and propagation velocity $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The source end is driven with a 0 -ohm impedance. The load end is open circuited. An oscilloscope probe (with 10meg ohm input impedance) is connected to the cable 100 meters from the source, as shown below:

V_{0} switches at time $t=0$, as shown. Sketch the voltage seen on the oscilloscope for $0<t<10 \mu \mathrm{~s}$. (V_{0} is initially at $5 \mathrm{~V},-\infty<t<0$.)

Problem 3 Serial LED PWM Display (25 points)

In this problem, you will design the data path and controller state diagram for a 16 -element LED display. The brightness of each LED is controlled by its duty cycle (using pulse width modulation), which is specified by a 4bit value $(0 / 15,1 / 15,2 / 15, \ldots, 15 / 15)$ stored in a 16×4 RAM. All components are driven by a 10 MHz system clock. The data (on/off for each LED) is shifted into the display shift register in $1.6 \mu \mathrm{~s}$, then displayed for $24.0 \mu \mathrm{~s}$.

[11 pts.] a) Complete a detailed block diagram of the data path for the LED PWM Display, using up to three CB4RE synchronous binary counters, one COMPM4 4-bit magnitude comparator, and one COMP4 identity comparator. Note that CB 4 RE has both a TC output $=Q_{3} \cdot Q_{2} \cdot Q_{1} \cdot Q_{0}$ and $\mathrm{CEO}=$ $T C \cdot C E$. Also, SR4RE shifts left.
[1 pts.] b) List the input signals to the data path that come from the control FSM.
[1 pts.] c) List the output signals from the data path that are inputs to the control FSM.
[10 pts.] d) Draw (a) state diagram(s) for a control FSM that will continuously turn on each LED for a fraction of time proportional to the value of its corresponding RAM location. (For example, if address 3 has contents 8, then LED3 should be on 8/15 of the display enable time.) Do not use more than 3 states. Ensure that FSM and data path start correctly.
[2 pts.] e) Why does the clock to the shift register need to be as fast as possible?

Problem 4 (28 points)

Using the data path on page 11, determine the appropriate timing diagram from page 9 , and list in register transfer notation the operation(s) that is (are) occurring at the rising edge of the clock. Also, note where any bus conflicts occur. For clock edge $1.5,2.5,3.5$, etc., list in RTN the operation occurring at the falling edge.

Consider that the FSM outputs may have glitches unless de-glitching flip flops are used. The notation for outputs is as follows: SIG output directly from FSM may have glitches, SIG \uparrow is passed through a rising edge-triggered DFF that generates a clean SIG, and SIG \downarrow is passed through a falling edge-triggered DFF that generates a clean SIG.

Assume that the clock is slow, say 1 MHz , but that outputs may be delayed from 0 to 100 ns because of routing delays. A BUFGS is used to prevent clock skew.

On clock edge 0 , the FSM enters state S 0 ; on clock edge 1 , the FSM enters state S 1 , etc.
Assume that signals that are tied to " 0 " or " 1 " are glitch free. Assume worst case timing for register transfer operations.

Recall that WE over-rides OE for the static RAM in the data path. For all state diagrams, ALU operation is $\mathrm{Y}=\mathrm{B}$ (ALU[1:0]=01). For RTN descriptions, assume worst case possibility.
a.

CS \downarrow
clock edge 1 : \qquad
clock edge 1.5: \qquad
Are bus conflicts possible?
If yes, state where they occur:
clock edge 2 : \qquad
clock edge 2.5: \qquad
clock edge 3 : \qquad
clock edge 4: \qquad
b.

Are bus conflicts possible?
clock edge 1 : \qquad If yes, state where they occur:
clock edge 2 : \qquad
clock edge 3 : \qquad
clock edge 4: \qquad
c.
clock edge 1 : \qquad
clock edge 1.5:
clock edge 2 : \qquad $\underset{\text { (from page } 9 \text {) }}{\text { timing diagram }}$

Are bus conflicts possible?
If yes, state where they occur:
clock edge 2.5: \qquad
clock edge 3: \qquad
clock edge 4: \qquad

Problem 4 - Data paths (cont.)

d.

IROUT $\uparrow \quad$ IROUT $\uparrow \quad$ IROUT $\uparrow \quad \mathrm{CS} \downarrow$ WE \uparrow

CS \downarrow WE \uparrow RBUSOUT \uparrow
clock edge 1 : \qquad
clock edge 1.5 : \qquad timing diagram
(from page 9)
\square
MBRLOAD

Are bus conflicts possible?
If yes, state where they occur:
clock edge 2 : \qquad
clock edge 2.5: \qquad
clock edge 3: \qquad
clock edge 4: \qquad
e.

clock edge 1 : \qquad Are bus conflicts possible?
clock edge 1.5 : \qquad If yes, state where they occur:
clock edge 2 : \qquad
clock edge 2.5: \qquad
clock edge 3 : \qquad
clock edge 4: \qquad
f.

$\mathrm{WE} \uparrow$	RBUSOUT	MBRLOAD
$\mathrm{CS} \downarrow$	IROUT \uparrow	CS \downarrow
IROUT \uparrow		

clock edge 1 : \qquad
clock edge 1.5: \qquad
clock edge 2 : \qquad
clock edge 2.5 : \qquad
clock edge 3 : \qquad

$$
\begin{aligned}
& \text { timing diagram } \\
& \text { (from page } 9 \text {) }
\end{aligned}
$$

Are bus conflicts possible?
If yes, state where they occur:
clock edge 4: \qquad

Problem 4 - Data paths (cont.)

g.

Are bus conflicts possible?
clock edge 1 : \qquad
clock edge 1.5: \qquad
If yes, state where they occur:
clock edge 2 : \qquad
clock edge 2.5: \qquad
clock edge 3: \qquad clock edge 4: \qquad

Problem 5 (15 points)

[12 pts.] a) Using the data path on page 11 and microprogrammed controller on page 12, write a microprogram, in symbolic form, to execute the following register transfer operations in the order listed:

RTN

 Microcode1) RAM $[$ IR $] \rightarrow$ MBR
2) $\mathrm{RAM}[\mathrm{PC}] \rightarrow \mathrm{IR}$
3) $\mathbf{M B R} \rightarrow$ RAM[IR]
4) $\mathbf{P C}+\mathbf{1} \rightarrow \mathbf{P C}$
[3 pts.] b) Assuming the RTN in part (a) represents the execute portion of an instruction cycle, state in a sentence what assembly language instruction is being executed, e.g., ADD or LOAD or BRN or DJNZ or ?. (Assume the PC has already been incremented after the instruction fetch.)

Problem 6 FSM Microprogram Analysis (12 points)

Consider the given FSM: Each FF has setup time t_{su}, hold time t_{hld}, for D and CE inputs. Propagation delay for each FF is $\geq t_{\text {ckoMIN }}$ and $\leq t_{\text {ckoMAX }}$. Inverter delay is $T_{\mathrm{INV}} \cdot t_{\mathrm{su}}$ and t_{hld} are less than 10 ns .

[2 pts.] a) Assuming proper operation, draw the state diagram for the FSM, assuming $T_{3}=T_{4}=0 \mathrm{~ns}$. Use notation for the state as $\mathrm{Q}_{1} \mathrm{Q}_{0}$
[2 pts.] b) With ENABLE $=1, T_{3}=T_{4}=0 \mathrm{~ns}$, what is the minimum clock period? (Express algebraically.)

```
period }
```

[2 pts.] c) With $T_{3}=T_{4}=T_{5}=0 \mathrm{~ns}, T_{6}=50 \mathrm{~ns}$, and clock period $=100 \mathrm{~ns}$, an asynchronous input ENABLE lasting 50 ns is input to the FSM. Estimate the chance of violating a setup or hold time on either FF, assuming uniform distribution of the ENABLE input change.

> chance of violation:
[3 pts.] d) With $T_{3}=T_{5}=T_{6}=0$, and $\operatorname{ENABLE}=1$, what is the maximum T_{4} for proper operation of the FSM?

$$
T_{4} \leq
$$

[3 pts.] e) With $T_{4}=T_{5}=T_{6}=0$, and $\operatorname{ENABLE}=1$, what is the maximum T_{3} for proper operation of the FSM?

$$
T_{3} \leq
$$

