University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Sciences

EECS150

J. Wawrzynek

Spring 2000

E. Caspi

Quiz #3 – Solution

There are many possible solutions – we present 3 plausible ones. There are two preliminary points which are important in all solutions:

· s=1. Since this is a combinational circuit, not a sequential one, we do not need the flip flop. In all cases, the output multiplexor should pass on the signal which bypasses the flip flop (i.e. s=1).

· Decompose the 8-input OR. A single CLB cannot possibly implement the 8-input OR which generates y. You must decompose that OR gate. This is easy, since OR is associative: a+b+c = (a+b)+c = a+(b+c). That means a wide OR can be implemented by a sequence of smaller ORs as well as by a tree (as in Homework #2, problem 2, which did the same for a wide XOR). To minimize total CLB usage, the particular OR decomposition you choose should depend on the partitioning of the rest of the circuit.
[image: image1.wmf]3-LUT

3-LUT

FF

(configuration bit)

0

1

0

1

Configurable Logic Block

a

b

c

d

e

f

g

h

s

Recall that this is our CLB:

The easiest way to use the CLB is as a 4-LUT. We compose the 4-LUT from the pair of 3-LUTs by feeding the same 3 inputs into {b,c,d} as into {e,f,g} and by using a for the fourth input. The first 3-LUT implements the 4-LUT function assuming a=0 while the second assumes a=1. This technique is demonstrated in Homework #3, problem 3.

A very simple partitioning can be done using 11 4-LUTs. Each of the 8 AND-AND terms uses one CLB, and the OR is partitioned into a tree of 3 CLBs.

[image: image2.wmf]3-LUT

3-LUT

FF

(configuration bit)

0

1

0

1

Configurable Logic Block

a

b

c

d

e

f

g

h

s

	b
	c
	d
	e
	f
	g
	s
	h
	

	x3
	x0
	x1
	x2
	x0
	x1
	x2
	1
	t9

	x4
	x0
	x1
	x2
	x0
	x1
	x2
	1
	t10

	x5
	x0
	x1
	x2
	x0
	x1
	x2
	1
	t11

	x6
	x0
	x1
	x2
	x0
	x1
	x2
	1
	t12

	x7
	x0
	x1
	x2
	x0
	x1
	x2
	1
	t13

	x8
	x0
	x1
	x2
	x0
	x1
	x2
	1
	t14

	x9
	x0
	x1
	x2
	x0
	x1
	x2
	1
	t15

	x10
	x0
	x1
	x2
	x0
	x1
	x2
	1
	t16

	t12
	t9
	t10
	t11
	t9
	t10
	t11
	1
	w0

	t16
	t13
	t14
	t15
	t13
	t14
	t15
	1
	w1

	0
	w0
	w1
	-
	-
	-
	-
	1
	y

Implementation in 11 CLBs

(4-LUT configuration).

The following partition in 5 CLBs is due to Drew Pertula. The 8 AND-AND terms can be grouped into 4 pairs, where the difference between each pair is the inversion of the x2 input. This guarantees that, in any such pair, one AND-AND term is forced to zero. Since the AND-AND terms are subsequently OR-ed, the value of x2 effectively selects which among each pair of AND-AND terms will pass to the output. Now we can pack each pair of OR-ed AND-AND terms into a single CLB – each AND-AND (now without x2 as an input) gets a 3-LUT, and x2 controls the multiplexer to select one of them. This requires 4 CLBs (2 AND-ANDs in each), and one additional CLB to OR their outputs (using a 4-LUT configuration). Total: 5 CLBs.

	a
	b
	c
	d
	e
	f
	g
	s
	h

	x2
	x0
	x1
	x3
	x0
	x1
	x4
	1
	w0

	x2
	x0
	x1
	x5
	x0
	x1
	x6
	1
	w1

	x2
	x0
	x1
	x7
	x0
	x1
	x8
	1
	w2

	x2
	x0
	x1
	x9
	x0
	x1
	x10
	1
	w3

	w3
	w0
	w1
	w2
	w0
	w1
	w2
	1
	y

Implementation in 5 CLBs.

We can do one better – 3 CLBs. You must first realize that the circuit is an 8-to-1 multiplexor. It chooses one of {x3,…,x10} according to the select bus {x2,x1,x0}. The first column of ANDs implements a decoder, converting the binary number {x2,x1,x0} into a one-hot representation {t1,…,t8} – only one of {t1,…,t8} will be 1, the rest 0. The second column masks out the unselected inputs from {x3,…,x10} by AND-ing them with 0 – only one of {t9,…,t16} will actually copy an x input, the rest will be 0. The final OR simply passes-on whichever result was selected.

An 8-to-1 multiplexor can be implemented by a tree of 2-to-1 multiplexors. A 2-to-1 multiplexor fits in a 3-LUT. A CLB combines 2 2-to-1 muxes into a 4-to-1 mux. A pair of such CLBs fed through a 2-to-1 multiplexor in a third CLB forms an 8-to-1 mux.

	a
	b
	c
	d
	e
	f
	g
	s
	h

	x1
	x3
	x4
	x2
	x5
	x6
	x2
	1
	t4

	x1
	x7
	x8
	x2
	x9
	x10
	x2
	1
	t5

	0
	t4
	t5
	x0
	-
	-
	-
	1
	y

Implementation in 3 CLBs.

x

0

x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

x

9

x

1

0

y

t

1

t

2

t

3

t

4

t

5

t

6

t

7

t

8

t

9

t

1

0

t

1

1

t

1

2

t

1

3

t

1

4

t

1

5

t

1

6

w0

w1

x

0

x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

x

9

x

1

0

y

t

1

t

2

t

3

t

4

t

5

t

6

t

7

t

8

t

9

t

1

0

t

1

1

t

1

2

t

1

3

t

1

4

t

1

5

t

1

6

w0

w1

w2

w3

t5

t4

t3

t2

t1

t0

y

x0

x1

x2

x10

x9

x8

x7

x6

x5

x4

x3

� EMBED AutoSketch.Drawing.7 ���

_1011766260.pcx

