
University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Science

EECS 150 Original Lab By: J.Wawrzynek and N. Weaver
Spring 2002 Later revisions by R. Fearing, and J. Shih

 Xilinx Foundation 3.0 version: Laura Todd
 Xilinx Foundation 3.1 version: Mark Feng

Lab 5
Finite State Machine in Verilog

1 Objectives

You will enter and debug a Finite State Machine (FSM). Using our definition of the problem and
logic equations specifying the FSM’s operation, you will enter your in the HDL editor and simulate it with
the logic simulator. You are asked to successfully download the design onto the Xilinx board to get
checked off.

2 Prelab
• Complete your IN1 (INput 1) and IN2 (INput 2) blocks
• Write a .cmd (command) file to test your CLB (Combinational Logic Block).
• Write one single .cmd file with all the FSM test scenarios specified in the check-off sheet.
• Do as much as possible before your scheduled lab time.

You are building the controller for a 2-bit serial lock used to control entry to a locked room. The

lock has a RESET button, an ENTER button, and two two-position switches, CODE1 and CODE0, for
entering the combination. For example, if the combination is 01-11, someone opening the lock would first
set the two switches to 01 (CODE1 = low, CODE0 = high) and press ENTER. Then s/he would set the
two switches to 11 (CODE1 = high, CODE0 = high) and press ENTER. This would cause the circuit to
assert the OPEN signal, causing an electromechanical relay to be released and allowing the door to open.
Our lock is insecure with only sixteen different combinations; think about how it might be extended.

If the person trying to open the lock makes a mistake entering the switch combination, s/he can
restart the process by pressing RESET. If s/he enters a wrong sequence, the circuitry would assert the
ERROR signal, illuminating an error light. S/he must press RESET to start the process over.

In this lab, you will enter a design for the lock’s controller in a new Xilinx project. Name this lab
“lab5”. Make RESET and ENTER inputs. Simulate by pressing the ENTER button by forcing it high for a
clock cycle. Use a two-bit wide input bus called CODE[1:0] for the two switches. (Information on how to
use buses will be given later in this handout). The outputs are an OPEN signal and an ERROR signal.

Figure 1 shows a decomposition of the combination lock controller, whose inputs and outputs are:

Input Signal Description
RESET Clear any entered numbers
ENTER Read the switches (enter a number in the combination)
CODE[1:0] Two binary switches
Output signal Description
OPEN Lock opens
ERROR Incorrect combination

Figure 1: Controller for the combination lock

Figure 1 helps you to visualize your design.

Figure 2: State Transition Diagram

3. Low-level specification

3.1 IN1 (INput 1) and IN2 (INput 2)

Blocks IN1 and IN2 process the input signals COM1 (COMpare 1) and COM2 (COMpare 2) into
a simpler form for the FSM. Specifically, COM1 is asserted when CODE[1:0] is the combination’s first

number. Similarly, COM2 is asserted for the second number. Partitioning the circuit in this way makes the
combination easy to change. Dipswitch[1] and Dipswitch [2] correspond to CODE[1:0].

Choose your own combination; the two numbers must be different.
This should be a simple block. Use a few AND gates and inverters, but write them in Verilog.

3.2 MYCLB
The MYCLB (MY Combinational Logic Block) block takes RESET, ENTER, COM1 , COM2 ,

and present state and generates OPENLOCK and ERROR, as well as the next state. Figure 2 shows the
state transition diagram, a Mealy machine since the transitions are labeled with both inputs and outputs.
The white circle denotes the rest state (i.e., the state the machine starts in).

Here is a truth table for your FSM, although you may not need to use it for your lab.

RESET ENTER COM1 COM2 S[2:0] NS[2:0] ERROR OPEN
1 X X X XXX 000 0 0
0 0 X X 000 000 0 0
0 1 0 X 000 101 0 0
0 1 1 X 000 001 0 0
0 0 X X 001 001 0 0
0 1 X 0 001 110 0 0
0 1 X 1 001 010 0 0
0 X X X 010 010 0 1
0 0 X X 101 101 0 0
0 1 X X 101 110 0 0
0 X X X 110 110 1 0

Figure 3: Truth Table for the FSM

3.3 MYDFF

(MY D Flip-Flops)
 Use MYDFF to store the states of your design. Think about how many FFs you will need for this
project.

4. Tasks
 Implement your design for MYCLB in Verilog behavioral model. This means you may not use
gates for your design. Here are some important hints. Your MYCLB module is designed entirely in
combinational logic, so you may not use clocks in your MYCLB module. Remember that in combinational
logic, you can use the always statement followed by input signals on to model block behavior.
For example: for a 1 bit adder, you can say
always @ (a, b, c) begin
 a ^ b ^ c;
end
Since your MYCLB module is a combinational logic module with inputs: enter, com1, com2, s[2:0] you
can say
always @ (enter or com1 or com2 or s) begin
 Your code….
end

This means whenever one of the above signals change, the always block will be executed, and an output
can be calculated. In this way, the always block works exactly the same way as the logic gates you have
laid out in part 4.4. If you want, you can actually specify delays to simulate actual gate delays.
 Now think about the purpose of your MYCLB block—it is used to calculate the next transition in
the FSM, and return the correct output. The next state value is found through the current state value and
the current input value; you can specify this in your MYCLB block.
For example
always @ (enter or com1 or com2 or s) begin
 case (s):
 3’b000: begin // state 000

 if (input = A or B) begin
 output = C;
 nextstate = 3’b001;
 end
 end

 3’b101: begin // state 111
 if (input = X or Y) begin
 output = Z;
 nextstate = 3’b111;
 end
 end
 ……
 default: nextstate = 3’b000;
 endcase
end
This example illustrates the power of behavioral HDL modeling. By using simple programming techniques
you are able to describe the entire behavior of your FSM and later synthesize the design into gate level
form.

Built 2 state machines using one-hot encoding and encoded states. Download your design and get
checked off by your TA. You can reuse your design for the Com blocks and the MYDFF blocks. Make
sure you create all 4 modules in different .v files and instantiate the modules in a final top.v file. Use
lab5constraint.exc file as your constraint file. (import it during synthesis)

Finally, you will interface your design to the Xilinx board via the locktop.v file given to you.
Once you download your design to the Xilinx board, the number LEDs will display which state you are in
to help you to debug. The light LEDs will display ERROR or OPENLOCK. The right most LED
correspond to OPENLOCK and the 2nd most right LED correspond to ERROR. The other light LEDs is
always on.

4.6 Debounce your ENTER signal
 In your future projects you will need to debounce certain external input signals. In this lab, you
are asked to debounce the ENTER signal. Debouncing a signal means to assert a signal for only 1 clock
cycle. If your clock frequency is 16MHZ and you press the ENTER button for 1ms, then your system
might interpret the ENTER signal has been asserted for thousands of cycles. In our case, since you are not
changing the 2-bit input, your design might think you have entered the same combination thousands of
times. For your debouncer, if its input has been asserted for 2 clock cycles (this makes sure the input signal
is not some random glitch), then it will debounce the signal in the next clock cycle. This means the
debounced signal will assert on the positive edge of the 3rd cycle and set low on the positive edge of the 4th
cycle. The output of your debouncer will be used to drive the rest of your lock as the ENTER signal. You
can build this in via FFCEs and logic gates, but make sure to ground your reset signal for the FFCE
blocks. Finally, add your code for the debouncer in locktop.v.

5. BUS
5.1 Definition and Usefulness

Buses are collections of ordered wires that (for one reason or another) were collected in a group
for easy reference. Examples of busses include the two input bits of our combination lock (aka. IN[1:0]),
the state and next state of our combination lock (S[2:0], NS[2:0]),or the memory busses for address and
data in your personal computer.

Quite often, a bus’s wires have similar purposes; the memory address bus in your PC is used to
dictate which address in the memory the CPU would like to access. To do so, it needs to send a 32-bit
integer to the memory. The easiest way to do so is to connect 32 wires from the CPU to the memory. Each
wire corresponds to one bit of data.

Xilinx uses a thicker wire to denote a bus, and it uses a standard naming convention. The
convention is:

NAME_OF_BUS [number1 : number2]

The number of bits in the bus is determined by the numbering. A bus called S[2:0] will have 3
wires; a bus called DATA[31:16] will have 16 wires. From our memory address bus example above, if the
data bus were called ADDR[31:0], the wires are numbered from 31 to 0, with the 31st wire being the
highest-order bit, and the 0th wire being the lowest-order bit. Order of the number matters: if the data bus
were called ADDR[0:31], the 31st wire being the lowest-order bit, and the 0th wire being the highest-order
bit.

5.2 Using Buses in the Simulator

Bussing related signals makes the circuit easier to read and simulate. When using the command
window or writing a command file using the script editor, as you did in lab1, writing:

 vector data DATA[7:0]
(or: v data DATA[7:0]) makes the signals DATA7, DATA6, … DATA0 into a vector called data,
which can be treated like any other signal: you can watch vectors and set their values. Use the assign
command to set a vector’s value. E.g.: a data 3e\h (hexadecimal) or a data 001111110\b
(binary).

6. Forcing Internal Signals

In addition to inputs, the logic simulator allows you to force internal signals, those normally
driven by components, to particular values. This trick lets you set the state to anything you want. Simply
set NEXTSTATE[2:0] to the state you want, clock the FSM, and then release NEXTSTATE[2:0].

7. Clks

You can define a clock (an input signal that changes periodically) in your script file or in the
command window. For example,

 clock clk 0 1
makes the clock signal clk oscillate as the circuit is simulated. To simulate for a single clock period, use
cycle instead of sim. Do not mix cycle and sim, as it can lead to some very interesting software behavior.

8. Command and Log Files

File à Run Script File… loads a script file and runs each line of it as if you were typing each of
those lines in the command window. The most convenient way to create a script file is to use the Tools à
Script Editor . If you want to use another editor you can, but if you do, make sure to save the file as plain
text and that the file extension is .cmd.

To save a log of the commands you use in your session, you can create a transcript of your work
using the command log. Start a log with log filename.log , and end a log by typing log alone.

9. Naming

• The Xilinx software, DOS, and Windows is case-insensitive, somewhat, although we’ve used all caps

for signals throughout this handout.
• You may use letters, numbers, and underscores (_) in filenames. The period (.) may only appear in

certain places (e.g., yourfile.cmd, etc). Avoid other punctuation.

Name: _______________________________ Name: _____________________________________
Lab Section (Check one)
M: AM PM T: AM PM W: AM PM Th: PM

Checkoffs: Lab 5

10.1 Design the IN1, IN2, and MYCLB blocks in Verilog (encoded states).

TA: _____________(50%)

10.2 Design the IN1, IN2, and MYCLB blocks in Verilog (one-hot states).

TA: _____________(50%)
 Download the design onto the board and test the following scenarios for 10.1 and 10.2:

You should test your project in simulation first. Each of these scenarios should work in
simulation.
(a) A sequence with the first combination number entered wrong.
(b) A sequence with the second combination number entered wrong.
(c) A sequence with the both combination numbers entered wrong.
(d) RESET is asserted after entering just the first number correctly.
(e) RESET is asserted after entering just the first number incorrectly.
(f) ENTER is asserted at state2 and state6, but state does not change.
(g) A successful entry of the combination.

10.3 Compare the number of CLB used by the encoded state and the one hot state machine.

 TA: _____________(1%)

10.4 Turned in on time

TA: _____________
(full credit (100%))

10.5 Turned in one week late

TA: _____________
(half credit (50% x points))

