
University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Sciences

EECS 150 Spring 2002

Checkpoint : MIDI Interface

This lab is an official project checkpoint. It is to be completed with a project partner on
your assigned project board. Project checkpoints are designed to keep you on a weekly
schedule towards completion of the project. In each week’s lab, you will be asked to
check-off some significant step in the design.

This lab marks a transition from what we think of as “spoon-feeding” to “hand-holding.”
From now in the semester, you will be given you less information on how to do the lab
work. You will be making your own design decisions and figuring out your own details.
You are encouraged to discuss the design problems with TAs and other students.

1 Objectives

The objective of this checkpoint is to demonstrate the ability to recognize MIDI
commands sent from a MIDI keyboard. This demonstration consists of two milestones in
the development of your project:

1. Correct electrical connection from the MIDI receptacle on the Xilinx board to the
FPGA, utilizing an optoisolator.

2. Correct functioning of a MIDI parser.

The “MIDI parser” refers to a circuit that examines input bytes from a MIDI source and
looks for particular patterns. This project requires a MIDI parser to recognize note-on
and note-off commands. All other commands must be ignored (except as part of adding
extra functionality to one’s design). Refer to the project specification for details on MIDI
commands and on MIDI hardware interfacing. Remember that there are two different
ways to encode note-off commands. Additionally, be sure to read the Addendum on
dealing with real-time messages and running status included at the end of this document.

2 Lab Assignment

First, you should read and understand the project specification. If you have any questions
about the project spec, get them cleared up early.

The physical MIDI interface requires wiring-up the Motorola MOC5009 optoisolator (or
the Sharp PC900V/PC900VQ) and associated discretes pack (2 resistors and 1 diode).
These components should be connected up as per Figure 6 of the project specification.
Note that the 5-pin MIDI interface in the figure is drawn as if looking into the male end
of a MIDI cable (not the female DIN connection on the board). The circuit will not
function if the interface is wired in a mirror image.

This project checkpoint requires three circuit designs for the FPGA:

1. A UART transceiver, as designed in Lab #7.

2. A MIDI parser that takes input from the UART and recognizes MIDI note-on and
note-off commands. The brains of this circuit are a simple FSM. This is a good
chance to try one-hot encoding for your state machine. An output interface for
the parser is suggested in the project specification and shown below (NOTE-ON
and NOTE-OFF status bits which pulse when a command is received, plus KEY
and VELOCITY registers to denote command contents).

3. A MIDI client that takes input from the parser and displays information about
recognized commands. The NOTE-ON/NOTE-OFF, KEY and VELOCITY
values produced by the parser can be displayed one at a time on the 7-segment
LEDs. You may use a pair of SW5 DIP-switches to select which value to display
(check the pinout sheets to see which SW5 DIP switches are still available)

Demonstrate your MIDI interface by connecting it to a MIDI keyboard in the lab and
playing a few notes. Try individual notes as well as several notes at a time.

3 Acknowledgements

Original lab by J. Wawrzynek (Fall 1994).
Modifications by N. Weaver, E. Caspi, J Sampson.

Figure 1: MIDI interface with suggested I/O

UART MIDI
Parser

MIDI
Client

Opto-
isolator

SERIAL_IN

DRDY

D[7:0]

NOTE-ON

NOTE-OFF

KEY

VELOCITY

LEDs SW5

Name: _______________________ Name: _______________________ Lab: ________

4 Check-offs
(MIDI Interface)

Pre-lab
• Wire wrap optoisolator + discretes. TA: ________ (10%)

Lab Assignment
• Working optoisolator + discretes TA: ________ (20%)

(visualize output on oscilloscope)

• Complete MIDI interface TA: ________ (70%)

Completed on time TA: ________ (×100%)

Completed 1 week late TA: ________ (×50%)

ADDENDUM ON RUNNING STATUS AND REAL-TIME MESSAGES

To support a larger variety of MIDI keyboards (our gray ones and yours
from home), you will need to extend your MIDI parser to support the
"running status" convention.

What is "running status?"

From "The USENET MIDI Primer",
<http://www.harmony-central.com/MIDI/Doc/primer.txt>

For all of these messages, a convention called the "running status
byte" may be used. If the transmitter wishes to send another message
of the same type on the same channel, thus the same status byte, the
status byte need not be resent.

This convention allows a transmitter to compress the data stream by
dropping status bytes. A command without a status byte implicitly uses
whatever status byte was most recently sent. For example, playing a
triad chord (3 notes together) may be encoded as a sequence of note-on
commands, only the first of which has a status byte:

1001nnnn 0kkkkkkk 0vvvvvvv 0kkkkkkk 0vvvvvvv 0kkkkkkk 0vvvvvvv
^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^
(1st note) (2nd note) (3rd note)

Similarly, the pressing and releasing of a key may be encoded as a
note-on followed by a note-on with 0-volume and no status byte:

1001nnnn 0kkkkkkk 0vvvvvvv 0kkkkkkk 00000000
^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^
 (key press) (release)

To support running status, your MIDI parser must be extended to do the
following:

 (1) remember the most recent status byte (store in a register).
 (2) process a command beginning with a data byte
 if the most recent status byte was a note-on or note-off

 (3) ignore a command beginning with a data byte
 if the most recent status byte was not a note-on or note-off.

If your parser was designed as a traditional state machine then the
addition of running-status is relatively simple. You probably have a
starting state that begins processing a command when it receives a
note-on or note-off status byte. That state must now also respond to a
data byte, either jumping ahead to process the new command (case (2)
above) or ignoring the byte (case (3) above). If your parser is not a
traditional FSM, you may need to be more ingenious. Alternatively, you
may find it easier to just redesign the parser as an FSM.

Status and data bytes are easy to differentiate. Status bytes have an
MSB (most significant bit) of 1, while data bytes have an MSB of 0.

There is one additional complication of which you should be aware but
which we will handle for you. This is the "real-time messages," a
collection of single-byte messages which may appear in the middle of
other messages. Since we plan to ignore such messages, the easiest way
to deal with them is to filter them out of the MIDI byte stream before
they reach the parser. The parser can then remain blissfully unaware
of pesky real-time messages.

From "The USENET MIDI Primer",
<http://www.harmony-central.com/MIDI/Doc/primer.txt>

 REAL TIME MESSAGES.

This is the final group of status bytes, 0xf8 - 0xff. These
bytes are reserved for messages which are called "real-time" messages
because they are allowed to be sent ANYPLACE. This includes in between
data bytes of other messages. A receiver is supposed to be able to
receive and process (or ignore) these messages and resume collection of
the remaining data bytes for the message which was in progress.
Realtime messages do not affect the "running status byte" which might
be in effect. All of these messages have no data bytes following (or
they could get interrupted themselves, obviously). The messages are as
follows:

 0xf8 timing clock
 0xf9 undefined
 0xfa start
 0xfb continue
 0xfc stop
 0xfd undefined
 0xfe active sensing
 0xff system reset

The above description suggests that the following are all valid ways to
transmit note-on messages interspersed with "active sensing" bytes:
(status 0xFE)

 1001nnnn [0xFE] 0kkkkkkk 0vvvvvvv

 1001nnnn 0kkkkkkk [0xFE] 0vvvvvvv

 1001nnnn 0kkkkkkk 0vvvvvvv [0xFE] 0kkkkkkk 0vvvvvvv

Note the use of running status in the last example.

Your project needs to know about real-time messages for two reasons.
First, many MIDI keyboards, including our gray ones, send periodic
"active sensing" messages (status 0xFE). Second, MIDI sequencers,
which play-back pre-recorded music, send timing messages (status
0xF8,0xFA,0xFB,0xFC). We may use a sequencer later in the semester to
test your project with a pre-recorded MIDI message stream. Although

your project needs to implement only the note-on and note-off commands,
it must be smart enough to not be confused by real-time messages.

Addendum by E. Caspi (Spring 2000). Edited by J. Sampson.

