

EECS 150 Spring 2004

Lab Lecture 8 Checkpoint2 Part1 3/12/2004

Greg Gibeling

Today

- Checkpoint2
 - Functional Description
 - Block Diagram
- AC97 Audio
- Announcements
- Reset/Timing
- Shift Register
- Simulation Model

Checkpoint2 (1)

- Run audio through the board
 - Interface with AC97 Codec (LM4549A)
 - Initialize analog loopback
 - Volume controls (Part2)
 - Full digital loopback (Part2)
- Basically its just a little amplifier
 - But its fun to have a working checkpoint

Checkpoint2 (3)

- First Week
 - Send some AC97 commands
 - Get analog loopback running
- Second Week (after break)
 - Usable volume controls
 - Loop digital PCM data through the FPGA

Checkpoint2 (4)

- Microphone input
- Line/Master Output
- Nothing fancy
 - Should be able to hear yourself
 - Just write to a few command registers
- Design for the future
 - Think ahead to the second half!

Checkpoint2 (5)

- To Do List (Not RTL or Bubble&Arc)
 - Ensure AP_RESET_ is held long enough
 - Continuously generate Sync signal
 - Wait for codec to be ready
 - Initialize registers
 - ..
 - Send Volume Commands
 - Loop digital audio

AC97 Digital Audio (1)

- Serial Bit Stream
- You must generate a sync signal
- Two Parts to AC97
 - Command Data (Read/Write Registers)
 - PCM (Wave) audio data
- The Chip
 - LM4549A Audio Codec
 - READ THE DATASHEET (Its short)

AC97 Digital Audio (2)

- Bit serial transmission
 - AP_SDATA_OUT is from FPGA to Codec
 - AP_SDATA_IN is from Codec to FPGA
- Data transmitted in 256b frames
 - 13 slots per frame
 - Slot0 is 16b
 - Slots1-12 are 20b
 - Sync signal high (roughly) during Slot0

AC97 Digital Audio (4)

- Slot0 Tag
 - Bit[15] 1 is frame is valid
 - Bits[14:11] 1 if corresponding slot is valid
 - Bits[10:2] Not Used
 - Bits[1:0] ID, set to 2'b00
- Slot1 Register Address
- Slot2 Register Data (for writes)
- Slots3&4 PCM Audio Data

Announcements (1)

- Lab Policy Reminder
 - Blue bins are for recycling
 - Gray bins are for trash
 - Pick up after yourselves
 - No eating at the stations
 - Not even snacking
- Enforced by account suspension

Announcements (2)

- Bathrooms
 - Don't use the wrong bathroom
 - Even while the custodial staff is cleaning
 - Use another floor or building
 - This applies to both men and women
- Enforced by ARREST BY UCPD

Announcements (3)

- Check the website every 24hrs
 - Really read the news
 - We post important information there
- Come to lectures
 - They're for YOU, not our amusement
 - If the lab is unclear WATCH THE WEBCAST
 - Many people are asking questions we answered in lab lecture

Announcements (4)

- Securing the website
 - You'll be able to get all the information
 - ...including the IEEE Verilog Standard
 - From anywhere!
- Logging In
 - Username: cs150-xxx
 - Password: SID (not your windows password)

AC97 Reset (1)

- Watch the Reset!
 - AP_RESET_ is active LOW
 - It will disable AP_BIT_CLOCK
 - You must hold reset for 1us
 - How can you deal with this?
- Use two clocks
 - Generate AP_RESET_ using the other clock

AC97 Reset (2)

- Some Register Need Async Reset
 - always @ (posedge BitClock or posedge BitReset)
- You should generate a "Long" reset
 - Goes active before AP_RESET_
 - Doesn't go inactive until much later
 - Avoids async logic (we don't like it)
- How do you do this?
 - Delays!

AC97 Sync

- First high SAMPLE marks start of frame
 - Not the first time you drive it high
 - What's the difference?
- Should be high for 16 cycles
 - All during Slot0
- This is CRITICAL
 - Without proper sync the codec won't work

Shift Registers (1)

- Shift Registers!
 - Very simple module
 - Very powerful, can be used for in and out
 - Shift towards high bit
- I/O
 - SIn, SOut Serial in and out
 - POn, Pout Parallel in and out
 - Load Load PIn into the register

Shift Registers (4)

Shift Registers (5)

- For part 1 you only need 1 SR
 - Takes 40b and shifts them out
- The only trick is to load the SR!
 - Basically one load per slot/pair of slots
 - You just prepare the right data with a mux
 - Load the shift register at the right time
 - And watch it go...

Volume Controls (1)

- Its backward
 - High numbers mean quiet
 - Low numbers mean loud
- Your controls should have:
 - Up (Bit 1)
 - Down (Bit 0)
 - Mute (Bit 2)
- See FPGA_TOP...

Volume Controls (2)

- Inputs: Up/Down/Mute/Updated
- Outputs: Setting/Changed
 - Up/Down/Mute causes a change
 - Setting changes
 - Changed goes high
 - Changed goes low on Updated
- Why?
 - What if changes happen back to back?

Testing (1)

- We built you a tester!
 - AC97Codec.V
 - This is for simulation ONLY
 - It error checks the AC97 data (somewhat)
- Limitations
 - The tester will not catch everything
 - It may in fact have bugs
 - It's a lot better than nothing

Tester (2)

- What does it do?
 - Sends PCMInput.txt into your design
 - Writes the output to PCMOutput.txt
 - Displays control register writes
 - Checks for many timing mistakes
 - Watches for common bugs
 - GENERATES THE CLOCK

Tester (3)

- PCMInput.txt
 - 10 hex digits per line
 - PCMLeft is the left 5 digits
 - PCMRight is the right 5 digits
- PCMOutput.txt
 - Identical format
 - If you do loopback the files will match

And now...

- Read the datasheet
 - Pages 2, 15 and 16-23
- Don't be afraid to test things
 - We put a lot into that tester
 - It might be buggy though
- Remember: This checkpoint is NEW
 - That means we're nearly as clueless as you
 - Watch the website for updates