B EECS 150 Spring 2004

Lab Lecture 9
Checkpoint2 Part2
3/19/2004

Greg Gibeling

i Today

= Debugging

= Checkpoint2

= Announcements

= Synplify

= Undeclared Wires
= Signal Conditioning
= Timing Analyzer

i Debugging (1)

= Debugging Algorithm
= Hypothesis: What's broken?
= Control: Give it controlled test inputs
= Expected Output: What SHOULD it do?
= Observe: Did it work right?

= If it broke: THAT'S GREAT!

» If we can't break anything like this then the
project must be working...

i Debugging (2)

= Don't debug randomly

= Just changing things at random often
makes things look fixed

= It won't really help

= Debug systematically

= Your first design may be the best

= "1000 CS150 students at a 1000
typewriters...”

= What can you do?

i Debugging (3)

= High Level Debugging
= Localize the problem
= PNGenl ? FIFO1? SDRAM? FIFOZ2?
PNGen2?
= Test Patterns
» Lets you easily isolate the broken component

= If you know exactly what’s going in you can
check what's coming out

i Debugging (4)

= Simulate the broken component(s)

= Writing test benches takes less time than
sitting around wondering why its broken

= Everyone hates writing testbenches
= (Even me)
= Get used to it

= What if the simulation works?
CHIP SCOPE!




i Debugging (5)

= Using the logic analyzer / ChipScope
= The most reliable tool you have
= When used properly
= Use the triggers effectively
= Trigger on recurring sequences
= Trigger on errors
= An unstable display is useless
= Compare synthesis to simulation

= ChipScope is almost as good as simulation

i Debugging (6)

= Your best debugging tool is logic
= If 3 out of 4 components work, what's
broken?
= Question all your assumptions!
= Just because you think its true doesn't
mean it is
= 90% of debugging time is wasted
debugging the wrong problem otherwise

= Given solutions and modules may not work
the way you expect!

i Debugging (7)

= Before you change anything
= Understand exactly what the problem is
= Find an efficient solution
= Evaluate alternative solutions
= After the change
= Fixes may make things worse sometimes

= May uncover a second bug
= May be an incorrect fix

= Repeat the debugging process

i Debugging (8)

= Ask around
= Someone else may have had the same bug

= They'll probably at least know about where
the problem is

= Different bugs may produce the same
results

= TAs
= The TAs know common problems
= We've also made a lot of the mistakes

i Checkpoint2 (1)

= AC97Codec had a bug!
= The Clock was at 6MHz, Oops

= The "Decode” blocks on the diagram
= Just comparators

= They generate the write/read/control
signals from the Bit/Slot Counters

= Analog loopback:

= You should be able to do this with 3
register writes

i Checkpoint2 (2)

= Simulation/Synthesis Mismatch!
= SDataln will arrive a cycle early on board
= SDataln will arrive “on time” in ModelSim
= A circuit that works in simulation will be off
by a cycle when you put in on the board
= Because of this you might never get a
CodecReady unless you “fix” your verilog




i Announcements (1)

= Checkpoint2
= Partl due the week after break (its easy)
= Part2 due the week after that

= Midterm II
= Tuesday March 30t in Class

= Review is Sunday March 28th 4-6pm in the
lab (it will be webcast/online)

= Homework Solutions will be up soon

i Announcements (2)

= All deadlines are posted to the website
= Please read this
= The week after break will be a little tough

= But the project deadlines have to be final,
we cannot push them back

= No office hours next week
= TAs might be around, but don't count on it

i Synplify Warnings (1)

= You need to get rid of these!

= Ignore ones in (complete) modules that
we've given you

= Warnings in your modules may explain
why it doesn't work

i Synplify Warnings (2)

= Pruning Sequential Instance
= Combinational Loop
= Latch Generated
= Too many clocks
= Incomplete Sensitivity List
= Others...

i A Dire Warning!

= Wire misspellings can be FATAL
= ModelSim/Synplify will assume a 1bit wire
= This is part of the Verilog standard
= The tools wont even warn you...

= Be very careful with this!
= Have your partner double check your code
= Be suspicious of blue lines in ModelSim

i Signal Conditioning (1)

= Off-by-a-cycle Errors
= Shorten a Pulse
= Lengthen a Pulse
= Shift a Pulse
= Remember the Edge Detector?
= Its something like that...




i Signal Conditioning (2)

= Shorten a Pulse
= 5 Cycles -> 4 Cycles

S e B

= Any guesses?
= What if we delayed the input?

i Signal Conditioning (3)

= Shorten a Pulse

Ir
In_Delayed
Out

= Out = In & In_Delayed

In_Delayed
Ir Re¢ Out

i Signal Conditioning (4)

= Lengthen a Pulse

Ir
In_Delayec
Out

= Out = In | In_Delayed

In_Delayed

Ir F h

i Timing Analyzer (1)

= Timing Constraints in Synplify
= Xilinx will attempt to match them
= Will tell you if it fails
= They make PAR run slower
= A constraint will not make your circuit
faster
= Better to just let things PAR
= Check the timing when we're done

i Timing Analyzer (2)

= “Analyze Post Place and Route Static
Timing (Timing Analyzer)”
= Implement Design -> Place & Route ->
Generate Post Place and Route Static
Timing
= This will tell you your minimum period
= If its too big then what?
= Simplify your circuit
= Constraints probably won't do it




