
Student Name: _____________________________________ SID: _____________________

CS 150 Midterm #2 Solution Page 1 30 March 2004; 2:00-3:30 PM

University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Science

EECS 150 R. H. Katz, Instructor
Spring 2004 Greg Gibeling, Head TA

SECOND MIDTERM EXAMINATION
Tuesday, 30 March 2004

INSTRUCTIONS—READ THEM NOW! This examination is CLOSED BOOK/CLOSED NOTES. There
is no need for calculations, and so you will not require a calculator, Palm Pilot, laptop computer, or other
calculation aid. Please put them away. You MAY use one 8.5” by 11” double-sided crib sheet, as densely
packed with notes, formulas, and diagrams as you wish. The examination has been designed for 50
minutes/50 points (1 point = 1 minute, so pace yourself accordingly). All work should be done on the
attached pages.

In general, if something is unclear, write down your assumptions as part of your answer. If your
assumptions are reasonable, we will endeavor to grade the question based on them. If necessary, of course,
you may raise your hand, and a TA or the instructor will come to you. Please try not to disturb the students
taking the examination around you.

Please refrain from discussing the examination after you have taken it. A small number of students are
taking a late examination due to special circumstances.

We will post solutions to the examination as soon as possible, and will grade the examination as soon as
practical, usually within a week. Requests for regrades should be submitted IN WRITING, explaining why
you believe your answer was incorrectly graded, within ONE WEEK of the return of the examination in
class. We try to be fair, and do realize that mistakes can be made during the regarding process. However,
we are not sympathetic to arguments of the form “I got half the problem right, why did I get a quarter of the
points?”

__ SID: _______________________________
(Signature)

__
(Name—Please Print!)

QUESTION POINTS ASSIGNED POINTS OBTAINED
1 10 -3

2 20 �
2 + e

3 20 i

TOTAL 50 �
2 + e – 3 + i

Student Name: _____________________________________ SID: _____________________

CS 150 Midterm #2 Solution Page 2 30 March 2004; 2:00-3:30 PM

Question 1. Verilog (10 points)
Identify ALL of the errors in the following Verilog description of a two-bit up-counter and the FSM that
uses it. This includes errors in the actual text as well as omitted text. Annotate the text with the error type
and your correction to it: Each found error is worth 1 point; there are a total of 10 separate errors.

module Counter(Clock, Reset, Count);
 input Clock, Reset;
 output [1:0] Count;

 reg [1:0] Count; // 1

 always @ (posedge Clock) begin // 2
 if (Reset) Count <= 0; // 3
 else Count <= Count + 1; // 4
 end
endmodule

module FSM(In, Out, Clock, Reset);
 input In, Clock, Reset;
 output Out;

 wire [1:0] Count;

 reg [1:0] CurrentState, NextState; // 5
 reg CounterReset;

 Counter ACounter(Clock, CounterReset, Count); // 6

 // This capitalization was introduced as the 11th error by MS Word.
 Parameter STATE_Idle = 2'h0, // 7
 STATE_A = 2'h1,
 STATE_B = 2'h2;

 always @ (posedge Clock) begin
 if (Reset) CurrentState <= STATE_Idle;
 else CurrentState <= NextState;
 end

 always @ (CurrentState or Count or In) begin // 8
 NextState = CurrentState;
 Out = 1'b0;
 CounterReset = 1'b0; // 9

 case (CurrentState)
 STATE_Idle: begin
 if (In) begin
 NextState = STATE_A;
 CounterReset = 1'b1;
 end
 end
 STATE_A: begin
 if (Count == 2'h3) begin
 NextState = STATE_B;
 CounterReset = 1'b1; // 10
 end
 end
 STATE_B: begin
 Out = 1'b1;
 if (Count == 2'h1)
 NextState = STATE_Idle;
 end
 default: begin
 NextState = 2'bxx;
 Out = 1'bx;
 CounterReset = 1’bx
 end // 11
 endcase
 end

endmodule

Student Name: _____________________________________ SID: _____________________

CS 150 Midterm #2 Solution Page 3 30 March 2004; 2:00-3:30 PM

Question 2. Datapath Design and Register Transfer (20 Points)
(i) Given the following datapath schematic, write down ALL of the architectural level register transfer

operations (e.g., Reg ← Reg op Reg) that can be executed in a single processor cycle. The functional
unit at the right of the datapath is a subtractor; at the left is an adder. (10 Points)

Write your register transfer operations below:

R0 <- R1 – R2
R0 <- R1 – R0
R0 <- R3 – R2
R0 <- R3 – R0

R3 <- R1 – R2
R3 <- R1 – R0
R3 <- R3 – R2
R3 <- R3 – R0

R1 <- R0 + R2
R1 <- R0 + R3
R1 <- R1 + R2
R1 <- R1 + R3

R2 <- R0 + R2
R2 <- R0 + R3
R2 <- R1 + R2
R2 <- R1 + R3

For this problem we were operating under the assumption that we would only ever write to a

single register per cycle. Since this is a microprocessor like structure that is a reasonable
assumption. We also assumed that each register had a separate write enable signal controlled by
whatever (not shown) controller that controlled the muxs.

If you had a different set of assumptions, your answer may well be correct too, provided that
you wrote down your assumptions.

�
�

�
�

�
�

�
�

�
�
�

	

�

	

�

����

����

�
�
�

	

�

	

�

����

����

Student Name: _____________________________________ SID: _____________________

CS 150 Midterm #2 Solution Page 4 30 March 2004; 2:00-3:30 PM

(ii) Starting with the four registers and two functional units (ADD, SUB), design a bussing structure for
the datapath so you can implement ANY register-to-register ADD or register-to-register SUB
(including the same register used as both sources and the destination). It is never the case that both
ADD and SUB take place at the same time. Your bussing design must use the fewest possible
additional wires to accomplish this task. Draw your bussing structure below. (5 Points)

�

�

�

�

�

�

�

�

�

�

�

	

���

���

���

In this problem, both addition and subtraction actually take place on the same cycle.

However, only one of those two results would be used. The problem was loosely worded.

(iii) Revise your solution to (ii) for the case where ADD and SUB can occur simultaneously, but never
have the same target register (it wouldn’t make sense to write something into the same register from
two different places at the same time!). Your design must use the fewest possible wires! (5 Points)

 Draw your bussing structure below:

Student Name: _____________________________________ SID: _____________________

CS 150 Midterm #2 Solution Page 5 30 March 2004; 2:00-3:30 PM

Question 3. Controller Design (20 Points)
Your task is to design the control for a sequential multiplier. The two operands are called the multiplier and
the multiplicand, and the result is the product. It is possible to implement a sequential multiplier using the
successive addition method. This is illustrated with the example below for unsigned 4-bit magnitude
operands and an unsigned 8-bit magnitude product (e.g., 3 times 4 is 12 in decimal):

Multiplier: 0011
Multiplicand: 0100
Product: 0000 1100

Start with the Product set to 0. The basic strategy is to examine the low order bit of the multiplier. If it is 1,
then add the multiplicand to the running Product. Otherwise, don’t do any addition. Shift the multiplier one
position to the right, and the multiplicand one position to the left. This process repeats four times for a 4-bit
Multiplier and Multiplicand. See the cycle-by-cycle results in the table below:

Cycle Multiplier Multiplicand Product
Initialize 0011 0000 0100 0000 0000
Cycle 0, Multiplier[0]=1 0001 0000 1000 0000 0100
Cycle 1, Multiplier[0]=1 0000 0001 0000 0000 1100
Cycle 2, Multiplier[0]=0 0000 0010 0000 0000 1100
Cycle 3, Multiplier[0]=0 0000 0100 0000 0000 1100

High-level pseudocode for the multiplier is as follows:

Product = 0
For i = 0 to 3 do
 If Multiplier[0] = 1 then Product = Product + Multiplicand
 Shift right the Multiplier
 Shift left the Multiplicand

Given the following datapath, write the verilog description for a Moore Machine implementation of the
multiplier control on the next page.

������

����
�������

�����

	
�����������

	
�������������

�

�

�� ������
��
!�����
��

�"
�"

!�	
������
�#�$���%#�

	
���������

!�	
��������
�#�$�!�$�

�#�$�&� �#�$�'
�

�#�$�&�

�"�"

�"

&������(�

������ ������)����*

���+� �����

Student Name: _____________________________________ SID: _____________________

CS 150 Midterm #2 Solution Page 6 30 March 2004; 2:00-3:30 PM

(i) Write your Verilog below. When the Initialize signal is true, load A and B into the Multiplicand and the
Multiplier, and set the Product to zero. When Initialize is no longer true, commence the computation of
the product (15 Points). Please note: you may need or want a counter for your implementation. You
may either build one yourself or instantiate one such as the counter given out in lab.

module Control(Clock, Initialize, LdMultiplier, ShiftRight,

Multiplier0, LdMultiplicand, ShiftLeft, ResetProduct,
LdProduct);

 input Clock, Initialize, Multiplier0;
 output LdMultiplier, ShiftRight, Multiplier0, ;
 output LdMultiplicand, ShiftLeft, ResetProduct, LdProduct;

 wire Enable;
 wire [2:0] Count;
 reg Start;

 Counter #(3) ACounter(.Clock(Clock),
 .Reset(Start),
 .Count(Count),
 .Enable(Enable));

 always @ (posedge Clock) Start <= Initialize;

 assign Enable = ~Count[2];

 assign LdMultiplier = Start;
 assign LdMultiplicand = Start;
 assign ResetProduct = Start;

 assign ShiftRight = Enable;
 assign ShiftLeft = Enable;

 assign LdProduct = Multiplier0;
endmodule

Of course there are an infinite number of answers to this question, and naturally we expect
to see the normal two-always-block format answer on most of the midterms. In fact given that this is
such a small counter (only 2 or 3 bits) you might not have used a counter at all, that’s just fine too.
 Anything that works…

(ii) Determine one way to accelerate the multiplication by taking advantage of special case values of the

inputs. Briefly describe how you would change your control to take advantage of the special case you
identified. (5 Points).

Any time the multiplier register is all 0s, the multiplication is over. Since none of the

subsequent steps would actually involve an addition, the product register already contains the
answer. A signal 4-input NOR gate could save you a lot of cycles for some multiplications.

Other valid answers include multiplications by 0 (at the start), or multiplications by 1, both

of which are easy to optimize.

