SDRAM Arbiter Timing “How To” and Specification update
Note: The specification in Checkpoint2.doc has been updated.

There has been some confusion over how the SDRAM Arbiter should function and what the purpose of the data request wires should be.

The purpose of the poll-ready-request handshake is to coordinate the timing between the arbiter and the attached module. The arbiter should assert the DataRequest signal when it’s giving attention to the attached module. This is *not* meant to be a direct link to the read/write enable on the fifo.

Let’s examine what the correct process to handle a RAM read would be.

The VEProcessor’s fifo’s data_count indicates that more data is needed. (Timing will be implementation dependant but must be workable)

1. The arbiter sends the “Poll” asking all attached modules if they need a RAM read/write.

2. The VEProcessor responds with the VE_Ready signal indicating that it requests a RAM read.

3. The arbiter ‘decides’ to give its attention to the VEProcessor and sends the “DataRequest” NOTE: Now the handshake is complete, both the arbiter and the VEProcessor know exactly what the other is doing.

4. The VEProcessor moves into a “Reading” state of some kind so that it can somehow keep track of how to increment its address counter for the next read. During this time the VEProcessor’s fifo should be enabled by the “RAMReadValid” signal which indicates when the read has been handled by the SDRAM itself! After the whole burst is loaded into the fifo, the Done signal should be asserted to notify the arbiter (and anything else that needs to know) that the RAM read is complete.

Hope that helps, sorry for the confusion!

-Neil

