Student Name:_Master Solution

SID:_______________________

1. Two-level logic minimization

Average Score: 11.24/15 = 75%
a) Fill in the following Karnaugh Map with a non-trivial function other than parity (or complement of parity) whose minimum product-of-sums and minimum sum-of-products forms have equal numbers of terms. For example, parity’s minimum sum-of-products and minimum product-of-sums representations have exactly eight terms. Find another function with the property that it has exactly the same number of terms in the minimum sum-of-products and minimum product-of-sums representation..

Here is one example (there were a variety of possible answers to this). One answer is given in the following K-Map.

	
	a’b’
	a’b
	ab
	ab’

	c’d’
	
	
	1
	1

	c’d
	1
	1
	
	

	cd
	
	
	1
	1

	cd’
	1
	1
	
	

The minimum sum-of-products for this function is a’c’d + ac’d’ + acd + a’cd’, with four terms. The minimum product-of-sums is (a + c + d)(a’ + c + d’)(a + c’ + d’)(a’ + c’ + d), four terms.

b) Find all the essential primes of the following function
	
	A’B’
	A’B
	AB
	AB’

	C’D’
	1
	
	
	1

	C’D
	1
	1
	1
	1

	CD
	
	X
	X
	

	CD’
	1
	
	
	1

This function has four primes: C’D, BD, B’C’, and B’D’. (The “four corners” prime). The minterms in C’D are all covered by either B’C’ or BD. The minterms in BD are all covered by C’D. The minterms in B’C’ are covered by B’D’ or by C’D. Prime B’D’ is essential: it is the only prime covering A’B’CD’ and AB’CD’. The solution is B’D’.
c) Consider the function abc’d’ + b’c’d + a’bc’d with don’t-care set a’cd +abc + ab’c. Find the minimum sum-of-products form and the minimum product-of-sums form
Solution. We form the Karnaugh map, below. From this, it’s easy to see the minimum sum-of-products is a’d + b’d + abd’
	
	A’B’
	A’B
	AB
	AB’

	C’D’
	
	
	1
	

	C’D
	1
	1
	
	1

	CD
	X
	X
	X
	X

	CD’
	
	
	X
	X

To find the minimum product of sums, we find the minimum sum-of-products for the complement and then use DeMorgan’s theorem to find the minimum product of sums.
	
	A’B’
	A’B
	AB
	AB’

	C’D’
	0
	0
	1
	0

	C’D
	1
	1
	0
	1

	CD
	X
	X
	X
	X

	CD’
	0
	0
	X
	X

The minimum sum-of-products for the complement is a’d’ + b’d’ + abd, and therefore the minimum product-of-sums for the initial function is (a+d)(b + d)(a’ + b’ + d’).
As an aside, the complement has a somewhat unusual property; the three primes a’d’, b’d’, and abd are all essential (their essential points are, respectively, a’bc’d’, ab’c’d’, and abc’d). So a’d’ + b’d’ + abd is the only minimal cover. This means that the largest prime, c, which is not essential, appears in no minimal cover!
2. Programmable Logic. Yblox, Inc., has gone into competition with Xilinx with a new type of programmable logic device – a four-input gate, which implements the function:
Yblox(A, B, C, D) = (A  B) & (C  D), or:

	
	A’B’
	A’B
	AB
	AB’

	C’D’
	
	
	
	

	C’D
	
	1
	
	1

	CD
	
	
	
	

	CD’
	
	1
	
	1

Average Score: 14.59/20 = 73%
a. Show how to implement the following functions using the Yblox device
i. Y’ .
Y’ = Y  1, so Y’= (Y  1) & 1 works ; 1 = (1  0), so Y’ = (Y  1) & (1  0), Y’ = Yblox(Y, 1, 1, 0) (For example).
ii. X = Y.
X = Y is (X  Y)’, and X  Y = Yblox(X, Y, 1, 0). So one solution is Yblox(Yblox(X, Y, 1, 0), 1, 1, 0).

iii. X & Y.

Yblox(X, 0, Y, 0)
iv. X Y.
X | Y =(X’ & Y’)’. X’ & Y’ = Yblox(X, 1, Y, 1), so Yblox(Yblox(X, 1, Y, 1), 1, 0, 1), for example.
b. Implement the four-input function (1,2,4,7,12,13,14,15) using the Yblox device
	
	X’Y’
	X’Y
	XY
	XY’

	Z’W’
	
	1
	1
	

	Z’W
	1
	
	1
	

	ZW
	
	1
	1
	

	ZW’
	1
	
	1
	

This is the function ((Z  W) & (X  Y))  ((Z = W) & Y), which is

 Yblox(X,Y,Z,W)  Yblox(0, Y, Z’W), which is

Yblox(Yblox(X,Y,Z,W), Yblox(0, Y, Z’, W), 0, 1)
3. Complete the timing diagrams given below for the two flip flops pictured

Average Score: 9.54/20 = 48%
	
[image: image1.emf]A

B

X

Q1

	
[image: image2.emf]A

Q2

X

Solution: The left-hand flip-flop is the clocked R/S master-slave flip-flop, discussed in both class and the text. As is mentioned in both class and text, the R/S master-slave is subject to the 1’s catching problem, so the glitch in A while the clock is high is caught and retained. The right-hand flip-flop is just the NOR gate implementation of the negative-edge-triggered D flip-flop.

[image: image3.emf]X

A

B

Q1

Q2

4. Add synchronous and asynchronous preset/clears to the latch given below

[image: image4.emf]
Average Score: 10.98/20 = 55%
a. Add a synchronous preset clear (preset dominant)
A synchronous preset/clear is added to the DFF by conditioning the data input; dominant preset/clear indicates that preset should dominate when both preset and clear are set to 1, leading to the function Data = (DC’) + P. This is shown here.

[image: image5.emf]Preset

D

C’

b. Add an asynchronous preset clear (preset dominant)
There are a variety of reasonable solutions to this, and some were accepted aside from the one pictured here; in particular, we accepted for full credit the synchronous preset/clr pictured above along with setting Clk1 = Clk + Preset + Clr, since this is the circuit implied by the usual way that Verilog code would be written for this. However, the best solution is to modify the inputs to the slave R/S latch on the far right of the circuit; in particular, preset should force set = 1, and clear should force reset = 1. Preset dominance implies that when both clear and preset are set, we have set = 1, reset = 0. We also need to ensure that when either preset or clear is set propagation from the master R/S latch is disabled, otherwise a preset when in state D=0 could force a 1-1 on the inputs to the slave R/S latch. The result, with annotations, is pictured here.

[image: image6.emf]Pre

Clr

Clr Preset’ forces R=1

for forward R/S latch

Preset forces S=1 for

forward R/S latch

Preset or Clr disables

propagation from

master latch

5. Consider a one-input, one-output finite-state machine with the following property. At each step, it outputs a 1 if the parity of the current input matched the parity of the preceding two inputs, 0 otherwise. So, therefore, 001 outputs a 0, 011 outputs a 1, etc
Average Score: 16.78/25 = 67%
a. Complete the following table for the outputs of the machine
	000
	1

	001
	0

	010
	0

	011
	1

	100
	0

	101
	1

	110
	1

	111
	0

b. Give the state transition diagram for a Mealy implementation of this FSM
Each state needs to encode: (1) the current input bit; and (2) the parity of the current and previous input bit. This requires 2 bits to encode, so a simple and natural encoding is simply the current bit and the previous bit. This also makes transitions very easy: from state (i,j), input k, the next state is (j,k), and the output is k = i  j. Initialization is reading and remembering the first two input bits in a sequence, so we also need a state START and state 0 (first input = 0) and state 1 (first input = 1). The state table and transition diagram are here (note the final encoding of states will require a third bit to distinguish initialization):
	State

	Input

	Output

	NextState

	Start

	0

	0

	0

	Start

	1

	0

	1

	0

	0

	0

	00

	0

	1

	0

	01

	1

	0

	0

	10

	1

	1

	0

	11

	00

	1

	0
	01

	00

	0

	1
	00

	01

	0

	0
	10

	01

	1

	1
	11

	10

	0

	0
	00

	10

	1

	1
	01

	11

	0

	1
	10

	11

	1

	0
	11

	
	
[image: image7.emf]00

0/1

01

10 11

1/0

0

/

0

1/0

1

/

1

0

/

0

1/1

0/1

0

0

/

0

1

/

0

1

0

/

0

1

/

0

Start

0/0

1/0

And this wasn’t on the exam, but here’s the implementation of this FSM. Note that if a standard D FF takes 6 gates, and the XOR and XNOR take 3 each, adding the start logic adds 19 gates (3 DFF’s and an AND), compared to just 18 for the rest of the FSM logic (2 DFF’s, an XOR, and an XNOR).

[image: image8.emf]Q

Q

SET

CLR

D

Q

Q

SET

CLR

D

Q Q

S

E

T

C

L

R

D

Q Q

S

E

T

C

L

R

D

Q Q

S

E

T

C

L

R

D

1

c. Give the state transition diagram for a Moore implementation of this FSM.
In the Moore FSM, of course, we not only need to remember the current and previous bit, as we did before, but also the output that we are supposed to give next. So this adds a third bit to all but the initialization states. The state table and transition diagram are given here; the encoding for each state is the triple (previous bit, current bit, output).
	State
	Input
	NextState
	Output

	Start
	0
	0
	0

	Start
	1
	1
	

	0
	0
	000
	0

	
	1
	010
	

	1
	0
	100
	0

	
	1
	110
	

	000
	0
	001
	0

	
	1
	010
	

	001
	0
	001
	1

	
	1
	010
	

	010
	0
	100
	0

	
	1
	111
	

	011
	0
	100
	1

	
	1
	111
	

	100
	0
	000
	0

	
	1
	011
	

	101
	0
	000
	1

	
	1
	011
	

	110
	0
	101
	0

	
	1
	110
	

	111
	0
	101
	1

	
	1
	110
	

[image: image9.emf]000

0

0

010

0

100

0

110

0

1

0

1

0

1

0

1

0

0

0

1

1

0

0

1

Start

0

0

1

001

1

0

011

1

101

1

111

1

1

1

1

0

1

0

0

Even though the state diagram for the Moore FF is more complex, there is only one more DFF in the implementation:

[image: image10.emf]Q

Q

SET

CLR

D

Q

Q

SET

CLR

D

Q Q

S

E

T

C

L

R

D

Q Q

S

E

T

C

L

R

D

Q Q

S

E

T

C

L

R

D

Q Q

S

E

T

C

L

R

D

PAGE
11
CS 150 Midterm #1

Spring 2008

_1265572661.vsd
1

Clr Preset’ forces R=1 for forward R/S latch

Pre

Clr

Preset forces S=1 for forward R/S latch

Preset or Clr disables propagation from master latch

_1265626463.vsd
1

_1265655241.vsd
J

Q

Q

K

SET
CLR

D

L

S

R

1

_1265655329.vsd
J

Q

Q

K

SET
CLR

D

L

S

R

_1265628740.vsd
000
0

0

010
0

100
0

110
0

1

0

1

0

1

0

1

1

0
0

0

1

1
0

0

1

Start
0

0

1

001
1

0

011
1

101
1

111
1

0

0

1

1

0

1

_1265622231.vsd
00

0/1

01

1/0

0/0

1/0

1/1

10

0/0

11

1/1

0/1

0

0/0

1/0

1

0/0

1/0

Start

0/0

1/0

_1265466287.vsd
A

B

X

Q1

_1265571184.vsd
X

A

B

Q1

Q2

_1265466024.vsd
1

A

Q2

X

_1265133482.vsd
1

Preset

D

C’

