
EECS150 Fall 2008 Interfaces

UCB Page 1

Working with Interfaces

.plan

1.) Interface driven design.

a. When modules are given to you.

i. Signal conditioning “signal massaging”

b. When writing your own modules.

i. Handshake-based interfaces.

2.) Advantages of a clean interface.

a. Remove combinational logic in between modules.

b. Eliminate your own timing assumptions about your modules.

3.) What makes a bad interface?

4.) What makes a good interface?

EECS150 Fall 2008 Interfaces

UCB Page 2

Dealing with a Bad Interface Specification

Your mission is to design a system that passes data from FIFO ABC:

FIFO A FIFO B FIFO C
Data Data

WR_EN

RD_EN

Full

Empty

WR_EN

RD_EN

Full

Empty

WR_EN

RD_EN

Full

Empty

Each FIFO has a RD_EN, WR_EN, Full, and Empty signals (sound familiar?). The

RD_EN and WR_EN signals have the following timing characteristics:

Clock

RD_EN

WR_EN

InData

OutData Valid data

Your job: using gates and registers, create the logic in between these FIFOs that will ensure that

the data going into FIFO A FIFO C. In other words, if you continuously present FIFO A with

data, ensure that it passes its data B, which then passes its data C.

EECS150 Fall 2008 Interfaces

UCB Page 3

Solution

FIFO A FIFO B FIFO C

Data Data

WR_EN

RD_EN

Full

Empty

WR_EN

RD_EN

Full

Empty

WR_EN

RD_EN

Full

Empty

Control Control

Issues

 Basic data transport

o Ensure that data only moves when the source has data and the sink has space.

o Separate the RD_EN and WR_EN signals by a cycle so that data is valid on the

Data line when the WR_EN rising edge happens.

 Preventing “word drop”

o When the sink reaches its full state, we still write in an extra word (which the

sink does not ever receive)

o This issue causes the circuit to fail.

Discussion

Work through some timing examples to see why the basic data transport scheme used with this

FIFO chain works.

 Of more importance is the “word drop” issue. To see when this happens, draw a timing

diagram where full and empty are both low for multiple cycles. Then, bring the full line into the

sink high. Notice what happens to the system: you still read out an extra word (which is lost)!

To fix this problem, add control logic (typically a counter) that controls data flow with another

signal which pulses every certain number of cycles to limit data flow. This works because the

“word drop” problem happens when full/empty are both low (so data will pass) for multiple

cycles. If you limit the rate at which data flows to 1 word/X cycles, then you never pass

consecutive words, and words are never dropped. More on this in discussion!

