Asynchronous FIFOs

Honors Discussion #14
EECS150 Spring 2010
Chris W. Fletcher

UCB EECS150 Spring 2010, Honors #14

Big Picture

* This week: {Synchronous, Asynchronous*} FIFOs

* JohnW covered Synchronous FIFOs, so we’ll stick to two+ clock domains

Motivation

 We want to pass data across clock domains
* Well, why not use a data/hold register?

footnote:
... With as high a throughput as possible

* Applications
* Rate matching video interfaces
 Communicating to off-chip components
* Bulk data transfer/DMA across a chip

Why is this hard?

* Metastability
— The ball getting stuck at the top of the hill

* Incorrect synchronizer outputs

— The ball falling down the wrong side of the hill

* Keep this case in mind throughout the hour

* Determining full/empty signals on time

Recall: Clock

Valid

Ready

|

~
s{§ !
§z, \Ne ge
Synchronizer dela;

“Almost full” and “Almost empty”
are used to fix this problem

Full & Empty

Disclaimer: This is the hardest part of Async FIFO design!

Out loud: Why doesn’t the synchronous FIFO counter work?
First-draft solution:
Keep 2 counters and synchronize across clock boundaries
(we’ll see what this looks like in several slides)

Caveat: leads to “pessimistic” full/empty

Pessimistic State Signals

Full goes high exactly when the FIFO fills

... but doesn’t learn that the FIFO gets read until several
cycles after the fact (Synchronizer latency)

Same story for the empty signal

The good
— This guarantees no {over, under} flow
— Works well when we burst data
(when the FIFO is between full and empty)

The bad
— Works badly when the FIFO is in the full/empty
state most of the time
Why? Every time the FIFO goes full/empty,
we impose the synchronizer delay

Proposal #1

e Pulse based inc/dec

* Resources
— 2n counter FFs
— 2n pointer FFs
— 4 synchronizers FFs

* Does this design work?

- No!

Clock Domain A

Clock Domain B

Write Inc Dec Pulse
Count
Synch b
T
£\
' Incr Output
Write N p Read
Pointer » Buffer ¢ Pointer
Input PR Incr .
l
Pulse Read
p Count
b Synch| Inc Dec

Proposal

2

Clock Domain A

* Binary pointers

* Direct comparison

* Resources Wi

| Clock Domain B

— 2n pointer FFs

— 2n + 4 synchronizer FFs

* Does this desigh work?

—In Theory,
but can we do better?

T\) i

Output

@o—— o |

Write
Pointer Buffer Read
Pointer |

— o !
. Read !

Input !
- (1= Empty) |

\| Data

Nb || Sync |
LL,,:?,,,L“____,,,‘,,,,,,,,,,,,,,,,,,,,,,,,,,,,J:

I i @ Handshak }@ i
)

b P— |

UCB EECS150 Spring 2010, Honors #14

Gray Code (GC) Primer

1 bit edit distance between adjacent words
Most useful gray codes are powers of 2 long

— Even gray code sequences are possible, but typically
require more resources to decode
— 0Odd gray code sequences are not possible. Why?

(Right) An efficient mirror-image gray code scheme

— Quadrants are colored

Notice that the MSBs show the counter’s “quadrant”

— Can be used to generate {, almost} {full, empty}

Con: gray code schemes usually require GC&—>Binary conversions

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000
0000

Proposal #3

° Gray COde pOinterS Clock Domain A | Clock Domain B
* Direct comparison ;y ‘ Symen €
e Requires GC<&—2Bin @, |
. | T\ }
* Resources e 4 oray Output
¢ > <9
e 2n pointer FFs wiite - o .
uffer ca
* 4n synchronizer FFs L e || P°er
* GC<&—2>Bin converters oput |) | e
7
* Does this design work? v 2

- In Theory

Binary vs. Gray code (#2 vs. #3)

#2 can pass arbitrary values over the clock boundary

— #3is limited to increments/decrements

#2 allows for arbitrary FIFO depth

— #3is best suited to powers of 2
#2 can calculate arbitrary “almost {full, empty}”

#3 can efficiently calculate some “almost {full, empty}”
thresholds (based on counter quandrant)

.. but ...

#2 imposes a handshake latency through using data synchronizers
(this is a serious problem for throughput!)

Acknowledgements & Contributors

Slides developed by Chris Fletcher (4/2010).

This work is partially based on ideas from:

(1) “Simulation and Synthesis Techniques for Asynchronous FIFO Design”

(2) “Simulation and Synthesis Techniques for Asynchronous FIFO Design
with Asynchronous Pointer Comparison”

This work has been used by the following courses:
— UC Berkeley CS150 (Spring 2010): Components and Design Techniques for Digital Systems

