
Asynchronous FIFOs

Honors Discussion #14

EECS150 Spring 2010

Chris W. Fletcher

1UCB EECS150 Spring 2010, Honors #14

Big Picture

• Many weeks ago + 1: Synchronous pipelines

& data transactions

• Many weeks ago: Asynchronous pipelines

& data transactions

• This week: {Synchronous, Asynchronous*} FIFOs

* JohnW covered Synchronous FIFOs, so we’ll stick to two+ clock domains

2UCB EECS150 Spring 2010, Honors #14

Motivation

• We want to pass data across clock domains

footnote:
… with as high a throughput as possible

• Applications

• Rate matching video interfaces

• Communicating to off-chip components

• Bulk data transfer/DMA across a chip

• Well, why not use a data/hold register?

3UCB EECS150 Spring 2010, Honors #14

Why is this hard?

• Metastability

– The ball getting stuck at the top of the hill

• Incorrect synchronizer outputs

– The ball falling down the wrong side of the hill
* Keep this case in mind throughout the hour

• Determining full/empty signals on time

Recall:

Ready

Valid

Clock

Synchronizer delay

W
e
 w

a
n
t

We get

“Almost full” and “Almost empty”
are used to fix this problem

4

Full & Empty

• Disclaimer: This is the hardest part of Async FIFO design!

• Out loud: Why doesn’t the synchronous FIFO counter work?

• First-draft solution:

Keep 2 counters and synchronize across clock boundaries

(we’ll see what this looks like in several slides)

• Caveat: leads to “pessimistic” full/empty

5UCB EECS150 Spring 2010, Honors #14

Pessimistic State Signals

• Full goes high exactly when the FIFO fills
… but doesn’t learn that the FIFO gets read until several

cycles after the fact (Synchronizer latency)

• Same story for the empty signal

• The good
– This guarantees no {over, under} flow
– Works well when we burst data

(when the FIFO is between full and empty)

• The bad
– Works badly when the FIFO is in the full/empty

state most of the time
Why? Every time the FIFO goes full/empty,
we impose the synchronizer delay 6

Proposal #1

• Pulse based inc/dec

• Resources

– 2n counter FFs

– 2n pointer FFs

– 4 synchronizers FFs

• Does this design work?

Count

Count

Write

Inc

Dec

Dec

Clock Domain A Clock Domain B

Input

Output

Buffer

Pulse

Synch

Pulse

Synch

Write

Pointer

!=0

Read

Pointer

!= Depth

Incr

Incr

Inc

Read

1b

1b
 No!

7UCB EECS150 Spring 2010, Honors #14

Proposal #2

Level

Synch

Level

Synch

Level

Synch

Level

Synch

Clock Domain A Clock Domain B

Output

Buffer

Data

Sync

Data

Sync

Write

Pointer Read

Pointer

!=Full

Input

Write

!= Empty

Read

Nb

Nb

Synch Synch

SynchSynch

Handshake

Handshake

Data

• Binary pointers
• Direct comparison

• Resources

– 2n pointer FFs

– 2n + 4 synchronizer FFs

• Does this design work?

In Theory,
but can we do better?

8UCB EECS150 Spring 2010, Honors #14

Gray Code (GC) Primer

• 1 bit edit distance between adjacent words

• Most useful gray codes are powers of 2 long
– Even gray code sequences are possible, but typically

require more resources to decode

– Odd gray code sequences are not possible. Why?

• (Right) An efficient mirror-image gray code scheme
– Quadrants are colored

• Notice that the MSBs show the counter’s “quadrant”
– Can be used to generate { , almost} {full, empty}

• Con: gray code schemes usually require GCBinary conversions

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000
0000

9UCB EECS150 Spring 2010, Honors #14

Proposal #3

Level

Synch

Level

Synch

Level

Synch

Level

Synch

Gray



Bin

Gray



Bin

Clock Domain A Clock Domain B

Output

Buffer

Level

Synch

Level

Synch

Write

Pointer Read

Pointer

!=Full

Input

Write

!= Empty

Read

Nb

Nb

Gray



Bin

Gray



Bin

• Gray code pointers
• Direct comparison

• Requires GCBin

• Resources
• 2n pointer FFs

• 4n synchronizer FFs

• GCBin converters

• Does this design work?

 In Theory
10UCB EECS150 Spring 2010, Honors #14

Binary vs. Gray code (#2 vs. #3)

• #2 can pass arbitrary values over the clock boundary
– #3 is limited to increments/decrements

• #2 allows for arbitrary FIFO depth
– #3 is best suited to powers of 2

• #2 can calculate arbitrary “almost {full, empty}”

• #3 can efficiently calculate some “almost {full, empty}”
thresholds (based on counter quandrant)

… but …

• #2 imposes a handshake latency through using data synchronizers

(this is a serious problem for throughput!)
11

Acknowledgements & Contributors

Slides developed by Chris Fletcher (4/2010).

This work is partially based on ideas from:

(1) “Simulation and Synthesis Techniques for Asynchronous FIFO Design”

(2) “Simulation and Synthesis Techniques for Asynchronous FIFO Design

with Asynchronous Pointer Comparison”

This work has been used by the following courses:
– UC Berkeley CS150 (Spring 2010): Components and Design Techniques for Digital Systems

12UCB EECS150 Spring 2010, Honors #14

