Problem 2 20 points
Consider the datapath below. All solid lines are 8 bit wide, the four dotted lines are 1 bit control
lines. The functional unit at the right of the datapath is a subtractor; at the left is an adder.
Assume you can only write to a single register per cycle. Two wires are shorted only if there is a
black circle at the intersection.

ADD SUBTRACT

selAl 2:1 mux selB] 2:1 mux seld 2:1 mux sell 2:1 mux

L :

a) Write down ALL of the architectural level register transfer operations (e.g., Reg «— Reg op
Reg) that can be executed in a single processor cycle. (5 points)

R =- Rl - R2 H3=-Rl -R2
Rl <- K1 - R0 H3=- Rl - R
Ry =- R3 -R2 Ri=-R3I-R2
R =- B3 - R H3<=- R3 - R
Rl = R0+ R2 R2 =- R+ R2
Rl = R0 + R3 R2 =- R0+ R3
Rl <=- Rl + R2 R2 =- Rl + R2
Rl <=- Rl + R3 R2 =- Bl + R3

For this problem we were operating under the assumption that we would only ever write to a
single register per cycle. Since this is a microprocessor like structure thal is a reasonable
assumption. We also assumed that each register had a separate write enable signal controlled by
whatever (not shown) controller that controlled the muxs.

If you had a dilferent sei of assumptions, your answer may well be correct too, provided that
you wrote down your assumptions,

b) Using only the four registers and two functional units (ADD, SUB), design a bussing
structure (ie. wires + muxes) for the datapath so you can implement ANY register-to-register
ADD or register-to-register SUB (including the same register used as both sources and the
destination). Both addition and subtraction should take place on the same cycle, but only one of
those two results will be stored. Your bussing design must use the fewest possible additional
wires to accomplish this task. Draw your bussing structure below. (7.5 points)

'J T3 MUX i’

—

l
OO>
WCw

|

> MUX

.t 1T 71

1

¥ MUX +

In this problem, both addition and subtraction actually take place on the same cycle.
However, only one of those two resulls would be used. The problem was loosely worded.

c¢) Revise your solution from b) for the case where ADD and SUB can occur simultaneously, but
never have the same target register (it wouldn’t make sense to write something into the same
register from two different places at the same time!). Your design must use the fewest possible
wires! (7.5 points)

4
— MUX

P MUX —
g

I
Ooo>x>»
mCw

|

T 11t

RALLX MWLX MUX
I 1 1 $ T T 1

Problem 5 20 points
Your task is to design the control for a sequential multiplier. The two operands are called the multiplier and
the mudriplicand, and the result is the product. It is possible to implement a sequential multiplier using the
successive addition method. This is illustrated with the example below for unsigned 4-bit magnitude
operands and an unsigned 8-bit magnitude product (e.g., 3 times 4 is 12 in decimal):

Multiplier: 0011
Multiplicand: 0100
Product: 0000 1100

Start with the Product set to 0. The basic strategy is to examine the low order bit of the multiplier. If it is 1,
then add the multiplicand to the running Product. Otherwise, don’t do any addition. Shift the multiplier one
position to the right, and the multiplicand one position to the left. This process repeats four times for a 4-bit
Multiplier and Multiplicand. See the cycle-by-cycle results in the table below:

Cycle Multiplier Multiplicand | Product

Initialize 0011 00000100 0000 0000
Cycle 0, Multiplier[0]=1 | 0001 0000 1000 0000 0100
Cycle 1, Multiplier[0]=1 | 0000 0001 0000 0000 1100
Cycle 2, Multiplier[0]=0 | 0000 0010 0000 0000 1100
Cycle 3, Multiplier[0]=0 | 0000 0100 0000 0000 1100

High-level pseudocode for the multiplier is as follows:

Product = 0

For 1 = 0 to 2 do
If Multiplier[0] = 1 then Product = Product + Multiplicand
Shift right the Multiplier
Shift left the Multiplicand

Given the following datapath, write the verilog description for a Moore Machine implementation of the
multiplier control on the next page.

"0000" A[3:0] B[3:0]
ShiftIn l ShiftOut
. - . _b-
Tnitiolize,| LdMaltiplier >3 Multiplier(3.0]
ShiftRight AN
Clk!
Multiplier[0] 3 v

LdMultiplicand|»| (72l = B3O |ShiftIn
5hir:¢ ot Mulﬂplrcand[:f:\.\O] -0

Control l Cik I
A4

Adder

y

ResetProduct >
LdProduct »| 5 Product[7:0]

/\
Clk e v

a) Write your Verilog below. When the Initialize signal is true, load A and B into the
Multiplicand and the Multiplier, and set the Product to zero. When Initialize is no longer true,
commence the computation of the product. (70 points)

module Control (Clock, Initialize, LdMultiplier, ShiftRight,

Multiplier0, LdMultiplicand, ShiftLeft, ResetProduct,
LdProduct) ;

input Clock, Imitialize, Multiplier(0;
output LdMultiplier, ShiftRight, Multiplier0, ;
output LdMultiplicand, ShiftLeft, ResetProduct, LdProduct;
wire Enable;
wire [2:0] Count;
reg Start;
Counter #(3) ACounter(.Clock(Clock),
.Reset (Start),
.Count (Count),

.Enable (Enable)) ;

always (@ (posedge Clock) Start <= Initialize;
assign Enable = ~Count [2];
assign LdMultiplier = Start;
assign LdMultiplicand = Start;
assign ResetProduct = Start;
assign ShiftRight = Enable;
assign ShiftLeft = Enable;
assign LdProduct = Multiplier0;
endmodule

Of course there are an infinite number of answers to this gquestion, and naturally we expect
o see the normal two-always-block formai answer on most of the midierms. In lact given thai this is
such a small counier (only 2 or 3 biis) you might not have used a counier ai all, that’s just fine too.
Anything that works...
b) Determine one way to accelerate the multiplication by taking advantage of special case values
of the inputs. Briefly describe how you would change your control to take advantage of the
special case you identified. (70 points)

Any time the multiplier register is all Os, the multiplication is over. Since none of the
subsequent steps would actually involve an addition, the product register already contains
the answer. A single 4-input NOR gate would save you a lot of cycles for some
multiplications.

Other valid answers include multiplication by 0 (at the start), or multiplication by 1,
both of which are easy to optimize.

