
Structural Verilog

UCB EECS150 Spring 2010

Lab Lecture #2

Agenda

• CAD Flow Extension
• Verilog
• Structural Verilog
• Administrative Info
• Lab #2: A Structural Accumulator

– Circuit
– Testing
– Analysis of resource usage and timing
– PreLab

• Questions?

2UCB EECS150 Spring 2010, Lab Lecture #2

CAD Flow Extension (1)

3UCB EECS150 Spring 2010, Lab Lecture #2

CAD Flow Extension (2)

4UCB EECS150 Spring 2010, Lab Lecture #2

• The Big Picture

Verilog (1)

• What’s an HDL?
– Textual Description of a Circuit

– Human and Machine Readable

– Hierarchical

– Meaningful Naming

• NOT A PROGRAM
– Describe what the circuit IS

– Not what it DOES

5UCB EECS150 Spring 2010, Lab Lecture #2

Verilog + CAD

6UCB EECS150 Spring 2010, Lab Lecture #2

design on napkin

Xor xor1 (.Y(Out), .A(In), .B(Q));
FDRSE ff (.Clock(Clock),

.D(In),

.R(Reset),

.Q(Q));

Text
editor

CAD Tools

placed & routed design

textual hardware description

Verilog + CAD

7UCB EECS150 Spring 2010, Lab Lecture #2

design on napkin

Design Entry: express the design in a
hardware description language (HDL)

hardware description

Logic Synthesis: transform
behavioral description into a gate-
level description

Gate-level (structural) description

Design Partitioning: transform
primitive gates and flip-flops into
LUTs and other primitive FPGA
elements

Netlist

Map: maps the primitive
elements in the netlist into
components on a specific FPGA

Translate: reduce to logic
elements expressed in terms
that Xilinx-specific devices can
understand

Xilinx database file

Native Circuit Description (not placed, not routed)

Native Circuit Description (not routed)
Place: determines exactly where,
physically, on the FPGA each LUT,
flip-flop, and logic gate should be
placed

Native Circuit Description (complete!)

Route: for each signal, choose
the path to get that signal from
its source to its destination

Digital Design Productivity, Gates/Week

• Behavioral HDL 2K-10K

• RTL HDL 1K-2K

• Gates 100-200

• Transistors 10-20

8UCB EECS150 Spring 2010, Lab Lecture #2

Source: DataQuest

Structural Verilog (1)

• Verilog Subsets
– Structural: primitive gates + modules

• Gate level design

• You will ONLY use Structural Verilog in this lab

– Dataflow: compact boolean expressions
• More compact expression of structural Verilog

– Behavioral: abstract syntax
• Timing nuances

• You will see this starting next lab

9UCB EECS150 Spring 2010, Lab Lecture #2

Structural Verilog (2)

• Structural 2:1 Mux example

10UCB EECS150 Spring 2010, Lab Lecture #2

module Mux21(A, B, S, Out);
input wire A, B, S;
output wire Out;

wire notS, ATemp, BTemp;

not invertS(notS, S);
and and(ATemp, A, notS),

andB(BTemp, B, S);
or result(Out, ATemp, BTemp);

endmodule

Key

Module wrapper
Input/Output wire declarations
Wire declarations
Gates

Administrative Info (1)

• Homework submission

• Lab lecture conflicts

• Card key access

• Check-off procedure

• Questions?

11UCB EECS150 Spring 2010, Lab Lecture #2

Lab #2 (1)

• Build a structural Accumulator
– Work with a real design

– Write parameterized Verilog

• Debugging
– Synplicity RTL/Technology schematic

• Analysis
– Resource consumption

– Timing

UCB EECS150 Spring 2010, Lab Lecture #2 12

Lab #2 (2)

• Structural Accumulator
– ALU

– ‘FDRSE’ Xilinx primitive flip-flop

13UCB EECS150 Spring 2010, Lab Lecture #2

Lab #2 (3)

• ALU
– We provide the Verilog

for N-bit version

– You must implement
the 1-bit ALU model

– Must support our
ALUOp

– Supports: +, -, &, |, ~,
pass-through

(7 operations)

UCB EECS150 Spring 2010, Lab Lecture #2 14

Lab #2 (4)

• FDRSE
– Xilinx primitive

– D-type flip-flop
• Instantiated like a simple module

• Specific Set/Reset characteristics

– “Read all about it!”
• Virtex-5 Libraries Guide for HDL Designs

• It’s part of the PreLab!

UCB EECS150 Spring 2010, Lab Lecture #2 15

Lab #2 (5)

• Accumulator
– We give you port specification

– You will implement the rest of the circuit

• Use code examples
– Mux21: Structural Verilog (gates, wires)

– ALU: generate statements

• Abide by our interfaces!

UCB EECS150 Spring 2010, Lab Lecture #2 16

Lab #2 (6)

• HW test harness
– TA Accumulator vs.

your Accumulator

– Check all input
combinations

– Signal error

UCB EECS150 Spring 2010, Lab Lecture #2 17

Lab #2 (7)

• Circuit Analysis
– Resource Usage

• Accumulator(width) = how many LUTs / SLICEs?

• generate allows you to experiment

– Timing
• Locate nets  “Technology Schematic”

• Calculate delay on the nets  FPGA Editor

UCB EECS150 Spring 2010, Lab Lecture #2 18

Lab #2 (8)

• PreLab
– Read specified material

• Virtex-5 Libraries Guide for HDL Designs (FDRSE section)

– Design your ALUBitSlice and Accumulator

– Write all of your Verilog

• Lab starts at debugging phase
– Assumption:

you have written all of your Verilog ahead of time

UCB EECS150 Spring 2010, Lab Lecture #2 19

Acknowledgements & Contributors

Slides developed by Brandon Myers & John Wawrzynek (1/2010).

This work is based closely on slides by:

Chris Fletcher (2008-2009)

Greg Gibeling (2003-2005)

This work has been used by the following courses:
– UC Berkeley CS150 (Spring 2010): Components and Design Techniques for Digital Systems

20UCB EECS150 Spring 2010, Lab Lecture #2

