
Spring 2012 EECS150 lec01-intro Page

EECS150 - Digital Design
Lecture 1 - Introduction

January 17, 2012

John Wawrzynek
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www-inst.eecs.berkeley.edu/~cs150

1

Spring 2012 EECS150 lec01-intro Page

Teaching Staff
Professor John Wawrzynek
(Warznek)
631 Soda Hall
johnw@cs.berkeley.edu
Office Hours: Tu 1-2pm, & by appointment.

All TA office hours held in 125 Cory. Check website for days and times.
2

AustinMichael

Shaoyi Cheng:
discussions sessions,

homework

Daiwei Li:
labs, project

James Parker:
labs, project

Spring 2012 EECS150 lec01-intro Page

Electronics all around us

3

Consumer
Products

Communications
Infrastructure

Automotive

Automotive

Aerospace and
Military

Spring 2012 EECS150 lec01-intro Page

Course Content
Components and Design Techniques for Digital Systems

more specifically
Synchronous Digital Hardware Systems

– Example digital representation: music waveform

– A series of numbers is used to represent the waveform,
rather than a voltage or current, as in analog systems.

• Synchronous: “Clocked” - all changes in the system are controlled
by a global clock and happen at the same time (not asynchronous)

• Digital: All inputs/outputs and internal values (signals) take on
discrete values (not analog).

4

Spring 2012 EECS150 lec01-intro Page

Course Content - Design Layers

Not a course on transistor physics and transistor
circuits. Although, we will look at these to better
understand the primitive elements for digital circuits.

High-level Organization : Hardware Architectures
System Building Blocks : Arithmetic units, controllers

Circuit Elements : Memories, logic blocks
Transistor-level circuit implementations

Circuit primitives : Transistors, wires

5

Not a course on computer architecture or the
architecture of other systems. Although we will look at
these as examples.

Spring 2012 EECS150 lec01-intro Page

Course Content

IC processing

Transistor Physics

Devices

Circuits

EE 40

CS 61C

Gates

FlipFlops

HDL

Machine Organization

Instruction Set Arch

Programming Languages

Asm / Machine Lang
Deep Digital Design Experience

Fundamentals of Boolean Logic

Synchronous Circuits

Finite State Machines

Timing & Clocking

Device Technology & Implications

Controller Design

Arithmetic Units

Encoding, Framing

Testing, Debugging

Hardware Architecture

Hardware Design Language (HDL)

Design Flow (CAD)

6

Spring 2012 EECS150 lec01-intro Page

Course Evolution

• Final project circa 1980:
– Example project: pong game with buttons for paddle and

LEDs for output.
– Few 10’s of logic gates

– Gates hand-wired together on “bread-board” (protoboard).

– No computer-aided design tools

– Debugged with oscilloscope and logic analyzer

7

Spring 2012 EECS150 lec01-intro Page

Course Evolution

• Final project circa 1995:
– Example project: MIDI music synthesizer
– Few 1000’s of logic gates

– Gates wired together internally on field programmable gate array
(FPGA) development board with some external components.

– Circuit designed “by-hand”, computer-aided design tools to help map the
design to the hardware.

– Debugged with circuit simulation, oscilloscope and logic analyzer

8

Spring 2012 EECS150 lec01-intro Page

Moore’s Law – 2x stuff per 1-2 yr

9

Spring 2012 EECS150 lec01-intro Page

Course Evolution

• Final project circa 2000-2008:
– Example project: eTV - streaming

video broadcast over Ethernet,
student project decodes and
displays video

– Few 10,000’s of logic gates

– Gates wired together internally on FPGA
development board and communicate
with standard external components.

– Circuit designed with logic-synthesis
tools, computer-aided design tools to
help map the design to the hardware.

– Debugged with circuit simulation, logic
analyzer, and in-system debugging tools.

10

Calinx Board

Spring 2012 EECS150 lec01-intro Page

Course Evolution

• Beginning 2009:
– Xilinx XUPV5

development board (a.k.a
ML505)

– Could enable very aggressive
final projects.

– But, modest use of resources
this semester.

– Project debugging with
simulation tools and with in-
system hardware debugging
tools.

11

• State-of-the-art LX110T
FPGA: ~1M logic gates.

– Interfaces: Audio in/out, digital video,
ethernet, on-board DRAM, PCIe,
USB, ...

Spring 2012 EECS150 lec01-intro Page

Final Project: Spring 2012

12

• Executes most commonly used MIPS instructions.
• Pipelined (high performance) implementation.
• Serial console interface for shell interaction, debugging, data-transfer.
• Instruction and data caches
• Video interface for display with 2-D vector graphics acceleration.
• Supported by a C language compiler.

Spring 2012 EECS150 lec01-intro Page

Administrivia

13

Spring 2012 EECS150 lec01-intro Page

Enrollment
• If you are on the waiting list and have taken 61c

or equivalent, you will be added.
• If you are enrolled and plan to take the course

you must attend your lab section this week and
next.

• Lab sections this week (meet TAs, pick up accounts,
simple “warm-up” lab exercise)

• No discussion sections this week.

14

Spring 2012 EECS150 lec01-intro Page

Attendance
• Attend regular lectures and ask questions, offer comments,

etc.

• Attend your lab section. You must stick with the same lab
section all semester.
– Lab exercises will be done individually; project with a partner.
– We will put together a lab section exchange in a few weeks to help

you move to a different section.

• Attend any discussion section. You may attend any discussion
section that you want regardless of which one you are enrolled
in.

• The entire teaching staff hold regular office hours (see class
webpage). Take advantage of this opportunity! Come early
(and often). Don’t wait until the night before an assignment
is due!

15

Spring 2012 EECS150 lec01-intro Page

Course Materials

• Class notes, homework & lab assignments,
solutions, and other documentation will be
available on the class webpage linked to the
calendar:

 http://www-inst.eecs.berkeley.edu/~cs150
– Check the class webpage and newsgroup often!
– Updated posts will occur.

Textbook: Harris & Harris
Publisher: Morgan Kaufmann

16

piazza For online Q/A.
http://www.piazzza.com/

More info later.

Spring 2012 EECS150 lec01-intro Page

Course Grading

Final
Exam
25%

Project
30%

HW
20%

• Comprehensive Exam held during
Finals week: Monday May 7
11:30-2:30.

• Project critical part of the course -
graded on timeliness, completeness
and optimality. Lots more on this later.

• Evening midterm exam, Wed March
21, 6-9pm.

• Weekly homework based on reading
and lectures.
• out before the end of each week,

due before Th lecture of following
week.

• Lab exercises for weeks 1-6, followed
by project checkpoints and final
checkoff.

• Labs due at the beginning of your next
lab session.

• Checkpoints due date in handouts.
17

Midterm
Exam
20%

labs
5%

Spring 2012 EECS150 lec01-intro Page

Tips on How to Get a Good Grade
The lecture material is not the most challenging part of the course.

• You should be able to understand everything as we go along.

• Do not fall behind in lecture and tell yourself you “will figure it out later from the
notes or book”.

• Notes will be online before the lecture (usually the night before). Look at them
before class. Do assigned reading (only the required sections).

• Ask questions in class and stay involved in the class - that will help you
understand. Come to office hours to check your understanding or to ask
qestions.

• Complete all the homework problems - even the difficult ones.

• The exams will test your depth of knowledge. You need to understand the
material well enough to apply it in new situations.

You need to do well on the project to get a good course grade.
• Take the labs very seriously. They are an integral part of the course.

• Choose your partner carefully. Your best friend may not be the best choice!

• Most important (this comes from 30+ years of hardware design experience):

• Be well organized and neat with homework, labs, project.

• In lab, add complexity a little bit at a time - always have a working design.
18

Spring 2012 EECS150 lec01-intro Page

Cheating
• We have posted the details of my cheating policy on the

class web site. Please read it and ask questions.
• If you turn in someone else's work as if it were your own,

you are guilty of cheating. This includes homework sets,
answers on exams, verilog code, block diagrams, etc.

• Also, if you knowingly aid in cheating, you are guilty.
• We have software that automatically compares your

submitted work to others.
• However, it is okay to discuss with others lab exercises

and the project. Okay to work together on homework.
But everyone must turn in their own work.

• If we catch you cheating, I will give you an F on the
assignment. If it is a midterm exam, final exam, or final
project, I will give you an F in the class. In either case,
will be reported to the office of student conduct.

19

Spring 2012 EECS150 lec01-intro Page

A few basic concepts

20

Spring 2012 EECS150 lec01-intro Page

Example Digital Systems
• General Purpose Desktop/Server Digital Computer

– Often designed to maximize performance. "Optimized for speed"

- Usually designed to minimize cost.
“Optimized for low cost”

- Of course, low cost comes at the expense of
speed.

• Handheld Calculator

21

Spring 2012 EECS150 lec01-intro Page

Example Digital Systems
• Digital Watch

– Low power operation comes at the expense of:
• lower speed
• higher cost

Designed to minimize power.
Single battery must last for years.

22

Spring 2012 EECS150 lec01-intro Page

Basic Design Tradeoffs

• You can improve on one at the expense of worsening one
or both of the others.

• These tradeoffs exist at every level in the system design -
every sub-piece and component.

• Design Specification -
– Functional Description.

– Performance, cost, power constraints.

• As a designer you must make the tradeoffs necessary to
achieve the function within the constraints.

23

Spring 2012 EECS150 lec01-intro Page

Hierarchy & Design Representation

24

Spring 2012 EECS150 lec01-intro Page

Hierarchy in Designs
• Helps control complexity -

– by hiding details and reducing the total number of things to handle at
any time.

• Modulalizes the design -
– divide and conquer
– simplifies implementation and debugging

• Top-Down Design
– Starts at the top (root) and works down by successive refinement.

• Bottom-up Design
– Starts at the leaves & puts pieces together to build up the design.

• Which is better?
– In practice both are needed & used.

• Need top-down divide and conquer to handle the complexity.
• Need bottom-up because in a well designed system, the structure

is influence by what primitives are available.

25

Spring 2012 EECS150 lec01-intro Page

Digital Design: What’s it all about?
Given a functional description and performance, cost, & power constraints,

come up with an implementation using a set of primitives.

• How do we learn how to do this?

1. Learn about the primitives and how to use them.

2. Learn about design representations.

3. Learn formal methods and tools to manipulate the representations.

4. Look at design examples.

5. Use trial and error - CAD tools and prototyping. Practice!
• Digital design is in some ways more an art than a science. The

creative spirit is critical in combining primitive elements & other
components in new ways to achieve a desired function.

• However, unlike art, we have objective measures of a design:

 Performance Cost Power
26

Spring 2012 EECS150 lec01-intro Page

Sychronous System Review from CS61C

27

Spring 2012 EECS150 lec01-intro Page

Integrated Circuit Example
• PowerPC microprocessor micro-

photograph
– Superscalar (3 instructions/cycle)
– 6 execution units (2 integer and 1 double

precision IEEE floating point)
– 32 KByte Instruction and Data L1 caches
– Dual Memory Management Units (MMU)
– External L2 Cache interface with

integrated controller and cache tags.

Comprises only transistors and wires.

Connections to outside world (ex.
motherboard)

• Memory interface
• Power (Vdd, GND)
• Clock input

28

Spring 2012 EECS150 lec01-intro Page

Clock Signal

A source of regularly occurring pulses used to measure the passage of
time.

• Waveform diagram shows evolution of signal value (in voltage) over time.

• Usually comes from an off-chip crystal-controlled oscillator.

• One main clock per chip/system.
• Distributed throughout the chip/system.

• “Heartbeat” of the system. Controls the rate of computation by directly
controlling all data transfers.

Τ represents
the time of one
clock “cycle”.

29

Spring 2012 EECS150 lec01-intro Page

Data Signals

The facts:
1. Low-voltage represents binary 0 and high-voltage, binary 1.

2. Circuits are designed and built to be “restoring” and deviations from ideal
voltages are ignored. Outputs close to ideal.

3. In synchronous systems, all changes follow clock edges.

Random adder circuit at a random
point in time:

Observations:
1. Most of the time, signals are in

either low- or high-voltage position.
2. When the signals are at the high-

or low-voltage positions, they are
not all the way to the voltage
extremes (or they are past).

3. Changes in the signals correspond
to changes in clock signal (but don’t
change every cycle).

30

Spring 2012 EECS150 lec01-intro Page

Circuit Delay
Digital circuits cannot produce

outputs instantaneously.

• In general, the delay through a
circuit is called the propagation
delay. It measures the time from
when inputs arrive until the
outputs change.

• The delay amount is a function of
many things. Some out of the
control of the circuit designer:
– Processing technology, the

particular input values.

• And others under her control:
– Circuit structure, physical layout

parameters.

31

Spring 2012 EECS150 lec01-intro Page

Bus Signals
Signal wires grouped together

often called a bus.

• X0 is called the least
significant bit (LSB)

• X3 is called the most
significant bit (MSB)

• Capital X represents the
entire bus.
– Here, hexadecimal digits

are used to represent the
values of all four wires.

– The waveform for the bus
depicts it as being
simultaneiously high and
low. (The hex digits give the
bit values). The waveform
just shows the timing.

32

Spring 2012 EECS150 lec01-intro Page

Combinational Logic Blocks

• Example four-input function:

• True-table representation of function.
Output is explicitly specified for each
input combination.

• In general, CL blocks have more than
one output signal, in which case, the
truth-table will have multiple output
columns.

a b c d y
0 0 0 0 F(0,0,0,0)
0 0 0 1 F(0,0,0,1)
0 0 1 0 F(0,0,1,0)
0 0 1 1 F(0,0,1,1)
0 1 0 0 F(0,1,0,0)
0 1 0 1 F(0,1,0,1)
0 1 1 0 F(0,1,1,0)
1 1 1 1 F(0,1,1,1)
1 0 0 0 F(1,0,0,0)
1 0 0 1 F(1,0,0,1)
1 0 1 0 F(1,0,1,0)
1 0 1 1 F(1,0,1,1)
1 1 0 0 F(1,1,0,0)
1 1 0 1 F(1,1,0,1)
1 1 1 0 F(1,1,1,0)
1 1 1 1 F(1,1,1,1)

33

Spring 2012 EECS150 lec01-intro Page

Example CL Block
• 2-bit adder. Takes two 2-bit

integers and produces 3-bit result.

• Think about true table for 32-bit
adder. It’s possible to write out,
but it might take a while!

a1 a0 b1 b0 c2 c1 c0
0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 1 0

0 0 1 1 0 1 1

0 1 0 0 0 0 1

0 1 0 1 0 1 0

0 1 1 0 0 1 1

0 1 1 1 1 0 0

1 0 0 0 0 1 0

1 0 0 1 0 1 1

1 0 1 0 1 0 0

1 0 1 1 1 0 1

1 1 0 0 0 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 1

1 1 1 1 1 1 0

34

Theorem: Any combinational logic function can
be implemented as a networks of logic gates.

Spring 2012 EECS150 lec01-intro Page

Logic “Gates”

ab c
00 0
01 0
10 0
11 1

AND ab c
00 0
01 1
10 1
11 1

OR NOT a b
0 1
1 0

ab c
00 1
01 1
10 1
11 0

NAND ab c
00 1
01 0
10 0
11 0

NOR ab c
00 0
01 1
10 1
11 0

XOR

• Logic gates are often the primitive elements out of which combinational logic circuits
are constructed.

– In some technologies, there is a one-to-one correspondence between logic gate
representations and actual circuits.

– Other times, we use them just as another abstraction layer (FPGAs have no real logic
gates).

• How about these gates with more than 2 inputs?
• Do we need all these types?

35

Spring 2012 EECS150 lec01-intro Page

Example Logic Circuit

36

• How do we know that these two representations are equivalent?

a b c y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Spring 2012 EECS150 lec01-intro Page

Logic Gate Implementation
• Logic circuits have been built out of many different

technologies. As we know, as long as we have a basic logic
gate (AND or OR) and inversion we can build a complete logic
family.

37

CMOS Gate

DTL

Hydraulic
Mechanical LEGO logic gates.
A clockwise rotation represents
a binary “one” while a counter-
clockwise rotation represents a
binary “zero.”

Spring 2012 EECS150 lec01-intro Page

Restoration

• A necessary property of any successful technology for logic
circuits is "Restoration".

• Circuits need:
– to ignore noise and other non-idealities at the their inputs, and

– generate "cleaned-up" signals at their output.

• Otherwise, each stage would propagates input noise to their
output and eventually noise and other non-idealities would
accumulate and signal content would be lost.

38

Spring 2012 EECS150 lec01-intro Page

Inverter Example of Restoration

• Inverter acts like a “non-linear” amplifier

• The non-linearity is critical to restoration

• Other logic gates act similarly with respect to input/output
relationship.

39

Example (look at 1-input gate, to keep it simple):

Idealize Inverter Actual Inverter

Spring 2012 EECS150 lec01-intro Page

General Model for Synchronous Systems

• All synchronous digital systems fit this model:
– Collections of combinational logic blocks and state elements connected by

signal wires. These form a directed graph with only two types of nodes
(although the graph need not be bi-partite.)

– Instead of simple registers, sometimes the state elements are large memory
blocks.

40

