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Lecture 1 - Introduction
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Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www-inst.eecs.berkeley.edu/~cs150

1



Spring 2012 EECS150 lec01-intro Page 

Teaching Staff
Professor John Wawrzynek
(Warznek)
631 Soda Hall
johnw@cs.berkeley.edu
Office Hours: Tu 1-2pm, & by appointment.

All TA office hours held in 125 Cory. Check website for days and times.
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AustinMichael

Shaoyi Cheng: 
discussions sessions, 

homework

Daiwei Li: 
labs, project

James Parker: 
labs, project
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Electronics all around us
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Course Content
Components and Design Techniques for Digital Systems

more specifically
Synchronous Digital Hardware Systems

– Example digital representation: music waveform

– A series of numbers is used to represent the waveform, 
rather than a voltage or current, as in analog systems.

• Synchronous: “Clocked” - all changes in the  system are controlled 
by a global clock and happen at the same time (not asynchronous)

• Digital: All inputs/outputs and internal values (signals) take on 
discrete values (not analog).
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Course Content - Design Layers

Not a course on transistor physics and transistor 
circuits. Although, we will look at these to better 
understand the primitive elements for digital circuits. 

High-level Organization : Hardware Architectures
System Building Blocks : Arithmetic units, controllers

Circuit Elements : Memories, logic blocks
Transistor-level circuit implementations

Circuit primitives : Transistors, wires
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Not a course on computer architecture or the 
architecture of other systems. Although we will look at 
these as examples. 
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Course Content

IC processing

Transistor Physics

Devices

Circuits

EE 40

CS 61C

Gates

FlipFlops

HDL

Machine Organization

Instruction Set Arch

Programming Languages 

Asm / Machine Lang
Deep Digital Design Experience

Fundamentals of Boolean Logic

Synchronous Circuits

Finite State Machines

Timing & Clocking

Device Technology & Implications

Controller Design

Arithmetic Units

Encoding, Framing

Testing, Debugging

Hardware Architecture

Hardware Design Language (HDL) 

Design Flow (CAD)
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Course Evolution

• Final project circa 1980:
– Example project:  pong game with buttons for paddle and 

LEDs for output.
– Few 10’s of logic gates

– Gates hand-wired together on “bread-board” (protoboard).

– No computer-aided design tools

– Debugged with oscilloscope and logic analyzer
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Course Evolution

• Final project circa 1995:
– Example project:  MIDI music synthesizer
– Few 1000’s of logic gates

– Gates wired together internally on field programmable gate array 
(FPGA) development board with some external components.

– Circuit designed “by-hand”, computer-aided design tools to help map the 
design to the hardware.

– Debugged with circuit simulation, oscilloscope and logic analyzer

8



Spring 2012 EECS150 lec01-intro Page 

Moore’s Law – 2x stuff per 1-2 yr

9



Spring 2012 EECS150 lec01-intro Page 

Course Evolution

• Final project circa 2000-2008:
– Example project:  eTV - streaming 

video broadcast over Ethernet, 
student project decodes and 
displays video

– Few 10,000’s of logic gates

– Gates wired together internally on FPGA 
development board and communicate 
with standard external components.

– Circuit designed with logic-synthesis 
tools, computer-aided design tools to 
help map the design to the hardware.

– Debugged with circuit simulation, logic 
analyzer, and in-system debugging tools.
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Calinx Board
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Course Evolution

• Beginning 2009:
– Xilinx XUPV5 

development board (a.k.a 
ML505) 

– Could enable very aggressive 
final projects.

– But, modest use of resources 
this semester.

– Project debugging with 
simulation tools and with in-
system hardware debugging 
tools.
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• State-of-the-art LX110T 
FPGA: ~1M logic gates. 

– Interfaces: Audio in/out, digital video, 
ethernet, on-board DRAM, PCIe, 
USB, ...
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Final Project: Spring 2012 
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• Executes most commonly used MIPS instructions.
• Pipelined (high performance) implementation.
• Serial console interface for shell interaction, debugging, data-transfer.
• Instruction and data caches
• Video interface for display with 2-D vector graphics acceleration.
• Supported by a C language compiler.
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Administrivia
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Enrollment
• If you are on the waiting list and have taken 61c 

or equivalent, you will be added.
• If you are enrolled and plan to take the course 

you must attend your lab section this week and 
next. 

• Lab sections this week (meet TAs, pick up accounts, 
simple “warm-up” lab exercise)

• No discussion sections this week. 

14
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Attendance
• Attend regular lectures and ask questions, offer comments, 

etc.

• Attend your lab section.  You must stick with the same lab 
section all semester.  
– Lab exercises will be done individually; project with a partner.
– We will put together a lab section exchange in a few weeks to help 

you move to a different section.

• Attend any discussion section.  You may attend any discussion 
section that you want regardless of which one you are enrolled 
in.  

• The entire teaching staff hold regular office hours (see class 
webpage).   Take advantage of this opportunity!  Come early 
(and often).  Don’t wait until the night before an assignment 
is due!

15



Spring 2012 EECS150 lec01-intro Page 

Course Materials

• Class notes, homework & lab assignments, 
solutions, and other documentation will be 
available on the class webpage linked to the 
calendar: 

  http://www-inst.eecs.berkeley.edu/~cs150
– Check the class webpage and newsgroup often! 
– Updated posts will occur.

Textbook:  Harris & Harris
Publisher: Morgan Kaufmann
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piazza For online Q/A.  
http://www.piazzza.com/ 

More info later. 
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Course Grading

Final
Exam
25%

Project
30%

HW
20%

• Comprehensive Exam held during 
Finals week:  Monday May 7 
11:30-2:30.

• Project critical part of the course - 
graded on timeliness, completeness 
and optimality.  Lots more on this later. 

• Evening midterm exam, Wed March 
21, 6-9pm.

• Weekly homework based on reading 
and lectures.  
• out before the end of each week, 

due before Th lecture of following 
week.

• Lab exercises for weeks 1-6, followed 
by project checkpoints and final 
checkoff.

• Labs due at the beginning of your next 
lab session.

• Checkpoints due date in handouts.
17

Midterm
Exam
20%

labs
5%
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Tips on How to Get a Good Grade
The lecture material is not the most challenging part of the course.

• You should be able to understand everything as we go along.

• Do not fall behind in lecture and tell yourself you “will figure it out later from the 
notes or book”.

• Notes will be online before the lecture (usually the night before).  Look at them 
before class.  Do assigned reading (only the required sections).

• Ask questions in class and stay involved in the class - that will help you 
understand.   Come to office hours to check your understanding or to ask 
qestions.

• Complete all the homework problems - even the difficult ones.

• The exams will test your depth of knowledge.  You need to understand the 
material well enough to apply it in new situations.

You need to do well on the project to get a good course grade.
• Take the labs very seriously.  They are an integral part of the course.

• Choose your partner carefully.  Your best friend may not be the best choice!

• Most important (this comes from 30+ years of hardware design experience): 

• Be well organized and neat with homework, labs, project.  

• In lab, add complexity a little bit at a time - always have a working design.
18
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Cheating
• We have posted the details of my cheating policy on the 

class web site.  Please read it and ask questions.
• If you turn in someone else's work as if it were your own, 

you are guilty of cheating.  This includes homework sets, 
answers on exams, verilog code, block diagrams, etc.

• Also, if you knowingly aid in cheating, you are guilty.
• We have software that automatically compares your 

submitted work to others. 
• However, it is okay to discuss with others lab exercises 

and the project.  Okay to work together on homework.  
But everyone must turn in their own work.

• If we catch you cheating, I will give you an F on the 
assignment.  If it is a midterm exam, final exam, or final 
project, I will give you an F in the class.  In either case, 
will be reported to the office of student conduct. 
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A few basic concepts
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Example Digital Systems
• General Purpose Desktop/Server Digital Computer

– Often designed to maximize performance. "Optimized for speed" 

- Usually designed to minimize cost.  
“Optimized for low cost”

- Of course, low cost comes at the expense of 
speed.

• Handheld Calculator

21
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Example Digital Systems
• Digital Watch

– Low power operation comes at the expense of:
• lower speed
• higher cost

Designed to minimize power.
Single battery must last for years.

22
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Basic Design Tradeoffs

• You can improve on one at the expense of worsening one 
or both of the others. 

• These tradeoffs exist at every level in the system design - 
every sub-piece and component. 

• Design Specification - 
– Functional Description. 

– Performance, cost, power constraints. 

• As a designer you must make the tradeoffs necessary to 
achieve the function within the constraints. 

23
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Hierarchy & Design Representation

24



Spring 2012 EECS150 lec01-intro Page 

Hierarchy in Designs
• Helps control complexity - 

– by hiding details and reducing the total number of things to handle at 
any time. 

• Modulalizes the design - 
– divide and conquer 
– simplifies implementation and debugging 

• Top-Down Design 
– Starts at the top (root) and works down by successive refinement. 

• Bottom-up Design 
– Starts at the leaves & puts pieces together to build up the design. 

• Which is better?
– In practice both are needed & used.

• Need top-down divide and conquer to handle the complexity. 
• Need bottom-up because in a well designed system, the structure 

is influence by what primitives are available. 

25
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Digital Design: What’s it all about?
Given a functional description and performance, cost, & power constraints, 

come up with an implementation using a set of primitives. 

• How do we learn how to do this? 

1. Learn about the primitives and how to use them. 

2. Learn about design representations. 

3. Learn formal methods and tools to manipulate the representations. 

4. Look at design examples. 

5. Use trial and error - CAD tools and prototyping.  Practice!
• Digital design is in some ways more an art than a science. The 

creative spirit is critical in combining primitive elements & other 
components in new ways to achieve a desired function. 

• However, unlike art, we have objective measures of a design: 

  Performance   Cost    Power
26
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Sychronous System Review from CS61C

27
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Integrated Circuit Example
• PowerPC microprocessor micro-

photograph
– Superscalar (3 instructions/cycle)
– 6 execution units (2 integer and 1 double 

precision IEEE floating point)
– 32 KByte Instruction and Data L1 caches
– Dual Memory Management Units (MMU)
– External L2 Cache interface with 

integrated controller and cache tags.

Comprises only transistors and wires.

Connections to outside world (ex. 
motherboard)

• Memory interface
• Power (Vdd, GND)
• Clock input

28
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Clock Signal

A source of regularly occurring pulses used to measure the passage of 
time.

• Waveform diagram shows evolution of signal value (in voltage) over time.

• Usually comes from an off-chip crystal-controlled oscillator. 

• One main clock per chip/system. 
• Distributed throughout the chip/system.

• “Heartbeat” of the system.  Controls the rate of computation by directly 
controlling all data transfers.

Τ represents 
the time of one 
clock “cycle”.

29
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Data Signals

The facts:
1. Low-voltage represents binary 0 and high-voltage, binary 1.

2. Circuits are designed and built to be “restoring” and deviations from ideal 
voltages are ignored.  Outputs close to ideal.

3. In synchronous systems, all changes follow clock edges.

Random adder circuit at a random 
point in time:

Observations:
1. Most of the time, signals are in 

either low- or high-voltage position.
2. When the signals are at the high- 

or low-voltage positions, they are 
not all the way to the voltage 
extremes (or they are past).

3. Changes in the signals correspond 
to changes in clock signal (but don’t 
change every cycle).
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Circuit Delay
Digital circuits cannot produce 

outputs instantaneously.

• In general, the delay through a 
circuit is called the propagation 
delay.  It measures the time from 
when inputs arrive until the 
outputs change.

• The delay amount is a function of 
many things.  Some out of the 
control of the circuit designer:
– Processing technology, the 

particular input values.

• And others under her control:
– Circuit structure, physical layout 

parameters.

31
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Bus Signals
Signal wires grouped together 

often called a bus.

• X0 is called the least 
significant bit (LSB)

• X3 is called the most 
significant bit (MSB)

• Capital X represents the 
entire bus.
– Here, hexadecimal digits 

are used to represent the 
values of all four wires.

– The waveform for the bus 
depicts it as being 
simultaneiously high and 
low. (The hex digits give the 
bit values).  The waveform 
just shows the timing.

    
32



Spring 2012 EECS150 lec01-intro Page 

Combinational Logic Blocks

• Example four-input function:

• True-table representation of function.  
Output is explicitly specified for each 
input combination.

• In general, CL blocks have more than 
one output signal, in which case, the 
truth-table will have multiple output 
columns.

a b c d         y
0 0 0 0  F(0,0,0,0)
0 0 0 1  F(0,0,0,1)
0 0 1 0  F(0,0,1,0)
0 0 1 1  F(0,0,1,1)
0 1 0 0  F(0,1,0,0)
0 1 0 1  F(0,1,0,1)
0 1 1 0  F(0,1,1,0)
1 1 1 1  F(0,1,1,1)
1 0 0 0  F(1,0,0,0)
1 0 0 1  F(1,0,0,1)
1 0 1 0  F(1,0,1,0)
1 0 1 1  F(1,0,1,1)
1 1 0 0  F(1,1,0,0)
1 1 0 1  F(1,1,0,1)
1 1 1 0  F(1,1,1,0)
1 1 1 1  F(1,1,1,1)

33



Spring 2012 EECS150 lec01-intro Page 

Example CL Block
• 2-bit adder.  Takes two 2-bit 

integers and produces 3-bit result.

• Think about true table for 32-bit 
adder.  It’s possible to write out, 
but it might take a while!

a1 a0 b1 b0 c2 c1 c0
0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 1 0

0 0 1 1 0 1 1

0 1 0 0 0 0 1

0 1 0 1 0 1 0

0 1 1 0 0 1 1

0 1 1 1 1 0 0

1 0 0 0 0 1 0

1 0 0 1 0 1 1

1 0 1 0 1 0 0

1 0 1 1 1 0 1

1 1 0 0 0 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 1

1 1 1 1 1 1 0

34

Theorem:  Any combinational logic function can 
be implemented as a networks of logic gates. 
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Logic “Gates”

ab  c
00  0
01  0
10  0
11  1

AND ab  c
00  0
01  1
10  1
11  1

OR NOT a  b
0  1
1  0

ab  c
00  1
01  1
10  1
11  0

NAND ab  c
00  1
01  0
10  0
11  0

NOR ab  c
00  0
01  1
10  1
11  0

XOR

• Logic gates are often the primitive elements out of which combinational logic circuits 
are constructed. 

– In some technologies, there is a one-to-one correspondence between logic gate 
representations and actual circuits.

– Other times, we use them just as another abstraction layer (FPGAs have no real logic 
gates).

• How about these gates with more than 2 inputs?
• Do we need all these types?

35
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Example Logic Circuit

36

• How do we know that these two representations are equivalent?

a b c   y
0 0 0   0
0 0 1   0
0 1 0   0
0 1 1   1
1 0 0   0
1 0 1   1
1 1 0   1
1 1 1   1



Spring 2012 EECS150 lec01-intro Page 

Logic Gate Implementation
• Logic circuits have been built out of many different 

technologies.  As we know, as long as we have a basic logic 
gate (AND or OR) and inversion we can build a complete logic 
family.  

37

CMOS Gate

DTL

Hydraulic 
Mechanical LEGO logic gates. 
A clockwise rotation represents 
a binary “one” while a counter-
clockwise rotation represents a 
binary “zero.”
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Restoration

• A necessary property of any successful technology for logic 
circuits is "Restoration".

• Circuits need:
– to ignore noise and other non-idealities at the their inputs, and

– generate "cleaned-up" signals at their output.

• Otherwise, each stage would propagates input noise to their 
output and eventually noise and other non-idealities would 
accumulate and signal content would be lost.
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Inverter Example of Restoration

• Inverter acts like a “non-linear” amplifier

• The non-linearity is critical to restoration

• Other logic gates act similarly with respect to input/output 
relationship.
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Example (look at 1-input gate, to keep it simple):

Idealize Inverter Actual Inverter
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General Model for Synchronous Systems

• All synchronous digital systems fit this model:
– Collections of combinational logic blocks and state elements connected by 

signal wires.  These form a directed graph with only two types of nodes 
(although the graph need not be bi-partite.)

– Instead of simple registers, sometimes the state elements are large memory 
blocks.
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