
Spring 2012 EECS150 - Lec08-proj1 Page

EECS150 - Digital Design
Lecture 08 - Project Introduction

Part 1

Feb 9, 2012
John Wawrzynek

1

Spring 2012 EECS150 - Lec08-proj1 Page

Project Overview

A. Pipelined CPU review
B.MIPS150 pipeline structure
C. Serial Interface
D. Later:

A.Memories, project memories and FPGAs
B. Video subsystem
C. Project specification and grading standard

2

Spring 2012 EECS150 - Lec08-proj1 Page

MIPS 5-stage Pipeline Review

3

(IF)

Use PC register
as address to
instruction
memory (IMEM)
and retrieve next
instruction.

(ID)

Generate control
signals, retrieve
register values
from regfile.

(EX)

Use ALU to
compute result,
memory address,
or compare
registers.

(DM)

Read or write
data memory
(DMEM).

(WB)

Send result
back to
regfile.

Control Hazard Example

Spring 2012 EECS150 - Lec08-proj1 Page

MIPS 5-stage Pipeline

4

 beq $1, $2, L1 IF ID EX DM WB

 add $5, $3, $4 IF ID EX DM WB

L1: sub $5, $3, $4 IF ID EX DM WB

branch address ready herebut needed here!

Register values are known here, move branch
compare and target address generation to here.

Still one remaining cycle of branch delay. “Architected branch delay
slot” on MIPS allows compiler to deal with the delay. Other
processors without architected branch-delay slot use branch
predictors or pipeline stalling.

cycle

Spring 2012 EECS150 - Lec08-proj1 Page

MIPS 5-stage Pipeline

5

 add $5, $3, $4 IF ID EX DM WB

 add $7, $6, $5 IF ID EX DM WB

Reg 5 value updated herereg 5 value needed here!

Data Hazard Example

New value is actually known here. Send it directly from the output register
of the the ALU to its input (and also down the pipeline to the register file).

Logic must be added to detect when such a hazard exists and control
multiplexors to forward correct value to ALU. No alternative except
to stall pipeline (thus hurting performance).

Spring 2012 EECS150 - Lec08-proj1 Page

MIPS 5-stage Pipeline

6

 lw $5, offset($4) IF ID EX DM WB

IF ID EX DM WB

IF ID EX DM WB

Memory value known herevalue needed here!

Load Hazard Example

“Architected load delay slot” on MIPS allows compiler to deal with the
delay. Note, regfile still needs to be bypassed.

No other alternative except for stalling.

 add $7, $6, $5

 add $10, $9, $8 add $7, $6, $5

 add $10, $9, $8

Spring 2012 EECS150 - Lec08-proj1 Page

Processor Pipelining

7

IF1 IF2 ID X1 X2 M1 M2 WB

IF1 IF2 ID X1 X2 M1 M2 WB

Deeper pipelines => less logic per stage => high clock rate.

Deeper pipeline example.

Deeper pipelines* => more hazards => more cost and/or higher CPI.

Remember, Performance = # instructions X Frequencyclk / CPI

But

Cycles per instruction might go up because of unresolvable hazards.

How about shorter pipelines ... Less cost, less performance

*Many designs included pipelines as long as 7, 10 and even 20 stages (like in the Intel Pentium 4). The later
"Prescott" and "Cedar Mill" Pentium 4 cores (and their Pentium D derivatives) had a 31-stage pipeline.

Spring 2012 EECS150 - Lec08-proj1 Page

MIPS150 Pipeline

8

I X M

The blocks in the datapath with the
greatest delay are: IMEM, ALU, and DMEM.
Allocate one pipeline stage to each:

Use PC register as address
to IMEM and retrieve next

instruction. Instruction gets
stored in a pipeline register,

also called “instruction
register”, in this case.

Most details you will need to work out for yourself. Some details to
follow ... In particular, let’s look at hazards.

Access data memory or I/O
device for load or store.
Allow for setup time for
register file write.

Use ALU to
compute result,

memory address,
or compare
registers for

branch.

Control Hazard Example

Spring 2012 EECS150 - Lec08-proj1 Page

MIPS 3-stage Pipeline

9

 beq $1, $2, L1 I X M

 add $5, $3, $4 I X M

L1: sub $7, $6, $5 I X M

I X

branch address ready here

but needed here!
Architected branch delay slot allows us
to delay branch target capture to here.

Therefore no extra logic is required.

 delay slot

add $5, $3, $4

L1: sub $7, $6, $5

Spring 2012 EECS150 - Lec08-proj1 Page

MIPS 3-stage Pipeline

10

 lw $5, offset($4) I X M

I X M

I X M

Memory value known here. It is
written into the regfile on this edge.

value needed here!

Load Hazard

 add $7, $6, $5

 add $10, $9, $8

“Architected load delay slot” on MIPS allows compiler to deal with the
delay. No regfile bypassing needed here assuming regfile “write
before read”.

 add $7, $6, $5

 add $10, $9, $8

Spring 2012 EECS150 - Lec08-proj1 Page

MIPS 3-stage Pipeline

11

 add $5, $3, $4 I X M

 add $7, $6, $5 I X M

reg 5 value updated herereg 5 value needed here!

Data Hazard

1. Stall the pipeline behind first add to wait for result to
appear in register file. NOT ALLOWED this semester.

2. Selectively forward ALU result back to input of ALU.

Ways to fix:

• Need to add mux at input to ALU, add control logic to sense when
to activate. A bit complex to design. Check book for details.

Spring 2012 EECS150 - Lec08-proj1 Page

Project CPU Pipelining Summary

• Pipeline rules:
– Writes/reads to/from DMem use leading edge of “M”
– Writes to RegFile use trailing edge of “M”
– Instruction Decode and Register File access is up to you.

• 1 Load Delay Slot, 1 Branch Delay Slot
– No Stalling may be used to accommodate pipeline hazards

(in final version).
• Other:

– Target frequency to be announced later (50-100MHz)
– Minimize cost
– Posedge clocking only

12

I X M

instruction
fetch

execute access data
memory

3-stage
pipeline

Spring 2012 EECS150 - Lec08-proj1 Page

Background for Lab #5

13

Spring 2012 EECS150 - Lec08-proj1 Page

Final Project: Spring 2011

14

• Executes most commonly used MIPS instructions.
• Pipelined (high performance) implementation.
• Serial console interface for shell interaction, debugging.
• Ethernet interface for high-speed file transfer.
• Video interface for display with 2-D vector graphics acceleration.
• Supported by a C language compiler.



































Spring 2012 EECS150 - Lec08-proj1 Page

Board-level Physical Serial Port

15

RS-232 Transmitter/Receiver

Oscilloscope
trace of ASCII
“K” transmission.

DB-9 connector

Implements standard
signaling voltage
levels for serial
communication.
Allows FPGA board to
communicate with any
other RS-232 device.

Spring 2012 EECS150 - Lec08-proj1 Page

FPGA Serial Port

16

More generally, how does software
interface to I/O devices?

CPU

UART

UART-CPU Adapter

FPGA

Software communicates with
UART using “UART-CPU Adapter”.

UART: Universal
Asynchronous
Receiver and
Transmitter
converts to/from
serial format with
start/stop bits.

Spring 2012 EECS150 - Lec08-proj1 Page

MIPS uses Memory Mapped I/O

• Certain addresses are not regular memory
• Instead, they correspond to registers in I/O

devices

0

0xFFFFFFFF
MIPS address map

17

Stores (sw) to the serial line data
register is sent over the serial line.

Example: Serial Line
Output Registers

data reg.
0xFFFF0000
0xFFFF0004

control reg.

Spring 2012 EECS150 - Lec08-proj1 Page

Processor Checks Status before Acting

• Path to device generally has 2 registers:
• Control Register, says it’s OK to read/write

(I/O ready) [think of a flagman on a road]
• Data Register, holds data for transfer

• Processor reads from Control Register in loop,
waiting for device to set Ready bit in Control
reg (0 ⇒ 1) to say its OK

• Processor then loads from (input) or writes to
(output) data register

18

Spring 2012 EECS150 - Lec08-proj1 Page

MIPS150 Serial Line Interface
• Serial-Line Interface is a memory-mapped device.
• Modeled after SPIM terminal/keyboard interface.

• Read from keyboard (receiver); 2 device regs
• Writes to terminal (transmitter); 2 device regs

Receiver Data
0xffff0004 Unused (00...00)

(IE)Receiver Control
0xffff0000

R
eady

(I.E.)Unused (00...00)

Transmitter Control
0xffff0008

Transmitter Data
0xffff000c

(I.E.)Unused (00...00)

Unused
19

Received
Byte

Transmitted
Byte

R
eady

Spring 2012 EECS150 - Lec08-proj1 Page

Serial I/O
• Control register rightmost bit (0): Ready

– Receiver: Ready==1 means character in Data Register
not yet been read;
1 ⇒ 0 when data is read from Data Reg

– Transmitter: Ready==1 means transmitter is ready to
accept a new character;
0 ⇒ Transmitter still busy writing last char
• I.E. bit (not used in our implementation)

• Data register rightmost byte has data
– Receiver: last char from serial port; rest = 0
– Transmitter: when write rightmost byte, writes goes to

serial port.
20

Spring 2012 EECS150 - Lec08-proj1 Page

“Polling” MIPS code
• Input: Read from keyboard into $v0
 lui $t0, 0xffff #ffff0000
Waitloop1: lw $t1, 0($t0) #control
 andi $t1,$t1,0x1
 beq $t1,$zero, Waitloop1
 lw $v0, 4($t0) #data

• Output: Write to display from $a0
 lui $t0, 0xffff #ffff0000
Waitloop2: lw $t1, 8($t0) #control
 andi $t1,$t1,0x1
 beq $t1,$zero, Waitloop2
 sw $a0, 12($t0) #data

21

