
Spring 2012 EECS150 - Lec10-sram1 Page

EECS150 - Digital Design
Lecture 10 - Static Random Access

Memory (SRAM) part 1

Feb 16, 2012
John Wawrzynek

1

Spring 2012 EECS150 - Lec10-sram1 Page

Memory-Block Basics
• Uses:

Whenever a large collection of state elements is required.
– data & program storage
– general purpose registers
– data buffering
– table lookups
– CL implementation

• Basic Types:
– RAM - random access memory
– ROM - read only memory
– EPROM, FLASH - electrically programmable read only

memory

2

M X N memory:

Depth = M, Width = N.

M words of memory, each word
N bits wide.

log2(M)

Spring 2012 EECS150 - Lec10-sram1 Page

Memory Components Types:
• Volatile:

– Random Access Memory (RAM):
• DRAM "dynamic"
• SRAM "static"

• Non-volatile:
– Read Only Memory (ROM):

• Mask ROM "mask programmable"
• EPROM "electrically programmable"
• EEPROM "erasable electrically programmable"
• FLASH memory - similar to EEPROM with programmer

integrated on chip

3

Focus Today

All these types are available as stand alone chips or as blocks
in other chips.

Focus Monday

Spring 2012 EECS150 - Lec10-sram1 Page

Standard Internal Memory Organization

• RAM/ROM naming convention:
– examples: 32 X 8, "32 by 8" => 32 8-bit words
– 1M X 1, "1 meg by 1" => 1M 1-bit words

2-D arrary of bit
cells. Each cell
stores one bit of
data.

4

Special circuit tricks are
used for the cell array to
improve storage density.

Spring 2012 EECS150 - Lec10-sram1 Page

Address Decoding

• The function of the address decoder
is to generate a one-hot code word
from the address.

• The output is use for row selection.
• Many different circuits exist for

this function. A simple one is shown
to the right.

5

Address

sel_row1

sel_row2

Spring 2012 EECS150 - Lec10-sram1 Page

Memory Block Internals

These circuits are just
functional abstractions of
the actual circuits used.

6

sel_row1

sel_row2

For read operation,
functionally the memory is
equivalent to a 2-D array
off flip-flops with tristate
outputs on each:

For write operation, functionally equivalent
includes a means to change state value:

Spring 2012 EECS150 - Lec10-sram1 Page

SRAM Cell Array Details

7

Most common is 6-
transistor (6T) cell array.wor

bit bit wor

bit bit wor

bit bit

wor

bit bit wor

bit bit wor

bit bit
word line

 bit bit

Word selects this cell,
and all others in a row.

For write operation, column bit
lines are driven differentially
(0 on one, 1 on the other).
Values overwrites cell state.

For read operation, column bit lines are equalized (set to same
voltage), then released. Cell pulls down one bit line or the other.

Spring 2012 EECS150 - Lec10-sram1 Page

Column MUX in ROMs and RAMs:
• Permits input/output data widths different from row width.
• Controls physical aspect ratio

– Important for physical layout and to control delay on wires.

8

Technique illustrated for read operation.
Similar approach for write.

Spring 2012 EECS150 - Lec10-sram1 Page

Cascading Memory-Blocks

9

How to make larger memory blocks out of smaller ones.

Increasing the width. Example: given 1Kx8, want 1Kx16

Spring 2012 EECS150 - Lec10-sram1 Page

Cascading Memory-Blocks

10

How to make larger memory blocks out of smaller ones.

Increasing the depth. Example: given 1Kx8, want 2Kx8

Spring 2012 EECS150 - Lec10-sram1 Page

Multi-ported Memory
• Motivation:

– Consider CPU core register file:
• 1 read or write per cycle limits

processor performance.
• Complicates pipelining. Difficult

for different instructions to
simultaneously read or write
regfile.

• Common arrangement in pipelined
CPUs is 2 read ports and 1 write
port.

data
buffer

disk or network interface

CPU
– I/O data buffering:

11

Aa

Dina
WEa

Ab

Dinb
WEb

Dual-port
Memory

Douta

Doutb

• dual-porting
allows both sides
to simultaneously
access memory at
full bandwidth.

Spring 2012 EECS150 - Lec10-sram1 Page

Dual-ported Memory Internals
• Add decoder, another set of

read/write logic, bits lines,
word lines:

• Example cell: SRAM

• Repeat everything but cross-
coupled inverters.

• This scheme extends up to a couple
more ports, then need to add
additional transistors.

deca decb
cell

array

r/w logic

r/w logic

data ports
address

ports

b2 b2b1 b1

WL2

WL1

12

Spring 2012 EECS150 - Lec10-sram1 Page

Adding Ports to Primitive Memory Blocks

13

Adding a read port to a simple dual port (SDP) memory.

Example: given 1Kx8 SDP, want 1 write & 2 read ports.

Spring 2012 EECS150 - Lec10-sram1 Page

Adding Ports to Primitive Memory Blocks

14

How to add a write port to a simple dual port memory.
Example: given 1Kx8 SDP, want 1 read & 2 write ports.

Hot Chips, 2006 slide 7

Two Generations of ASMBL
(Application-Specific Modular BLock Architecture)

Serial ()*
!"#$%&'4 !"#$%&')

Virtex-5 LX110T
memory blocks.

Block RAMs
in four
columns.

Distributed RAM
using LUTs
among the CLBs.

Spring 2009 EECS150 - Lec03-FPGA Page

A SLICEM 6-LUT ...

Normal
6-LUT
inputs.

Normal
5/6-LUT
outputs.

Memory
write

address

Memory data input

Memory
data
input.

Control output for
chaining LUTs to

make larger memories.

Virtex-5 FPGA User Guide www.xilinx.com 173
UG190 (v4.2) May 9, 2008

CLB Overview
R

Figure 5-3: Diagram of SLICEM

A6
DI2

COUT

D

DX

C

CX

B

BX

A

AX

O6

DI1
MC31

O5

UG190_5_03_041006

A5
A4
A3
A2
A1

D6

DI
DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

Reset Type

DX

D5
D4
D3
D2
D1

WA1-WA6
WA7
WA8

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

Q

CE
CK

CLK
WSGEN

CIN

0/1

WE

Sync

Async

A6
DI2

O6

DI1

MC31

O5

A5
A4
A3
A2
A1

C6

CI

CX

C5
C4
C3
C2
C1

A6
DI2

O6

DI1

MC31

O5

A5
A4
A3
A2
A1

B6

BI

BX

B5
B4
B3
B2
B1

A6
DI2

O6

DI1

MC31

O5

A5
A4
A3
A2
A1

A6

AI

AX
SR
CE

CLK

WE

A5
A4
A3
A2
A1

Q

Q

Q

WA1-WA6
WA7
WA8

WA1-WA6
WA7
WA8

WA1-WA6
WA7
WA8

A 1.1 Mb distributed RAM can be made if
all SLICEMs of an LX110T are used as RAM.

16

Synchronous write / asychronous read

Spring 2009 EECS150 - Lec03-FPGA Page

SLICEL vs SLICEM ...

Virtex-5 FPGA User Guide www.xilinx.com 173
UG190 (v4.2) May 9, 2008

CLB Overview
R

Figure 5-3: Diagram of SLICEM

A6
DI2

COUT

D

DX

C

CX

B

BX

A

AX

O6

DI1
MC31

O5

UG190_5_03_041006

A5
A4
A3
A2
A1

D6

DI
DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

Reset Type

DX

D5
D4
D3
D2
D1

WA1-WA6
WA7
WA8

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

Q

CE
CK

CLK
WSGEN

CIN

0/1

WE

Sync

Async

A6
DI2

O6

DI1

MC31

O5

A5
A4
A3
A2
A1

C6

CI

CX

C5
C4
C3
C2
C1

A6
DI2

O6

DI1

MC31

O5

A5
A4
A3
A2
A1

B6

BI

BX

B5
B4
B3
B2
B1

A6
DI2

O6

DI1

MC31

O5

A5
A4
A3
A2
A1

A6

AI

AX
SR
CE

CLK

WE

A5
A4
A3
A2
A1

Q

Q

Q

WA1-WA6
WA7
WA8

WA1-WA6
WA7
WA8

WA1-WA6
WA7
WA8

174 www.xilinx.com Virtex-5 FPGA User Guide
UG190 (v4.2) May 9, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Each CLB can contain zero or one SLICEM. Every other CLB column contains a SLICEMs.
In addition, the two CLB columns to the left of the DSP48E columns both contain a SLICEL
and a SLICEM.

Figure 5-4: Diagram of SLICEL

A6
LUT
ROM

COUT

D

DX

C

CX

B

BX

A

AX

O6
O5

UG190_5_04_032606

A5
A4
A3
A2
A1

D6

DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

DX

D5
D4
D3
D2
D1

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

Q

CE
CK

CIN

0/1

A6
LUT
ROM

O6
O5

A5
A4
A3
A2
A1

C6

CX

C5
C4
C3
C2
C1

A6
LUT
ROM

O6
O5

A5
A4
A3
A2
A1

B6

BX

B5
B4
B3
B2
B1

A6
LUT
ROM

O6
O5

A5
A4
A3
A2
A1

A6

AX
SR
CE

CLK

A5
A4
A3
A2
A1

Q

Q

Q

Reset Type

Sync

Async

SLICEMSLICEL

SLICEM adds memory
features to LUTs, + muxes.

17

Spring 2009 EECS150 - Lec03-FPGA Page

Example Distributed RAM (LUT RAM)

Virtex-5 FPGA User Guide www.xilinx.com 187
UG190 (v4.2) May 9, 2008

CLB Overview
R

Distributed RAM configurations greater than the provided examples require more than
one SLICEM. There are no direct connections between slices to form larger distributed
RAM configurations within a CLB or between slices.

Figure 5-14: Distributed RAM (RAM256X1S)

UG190_5_14_050506

DI1D

A[7:0]

WCLK
WE

(CLK)
(WE/CE)

6
8

SPRAM64

RAM256X1S

A[6:1]
WA[8:1]
CLK
WE

O6

DI1

6
8

SPRAM64

A[6:1]
WA[8:1]
CLK
WE

O6
F7BMUX

F8MUX
Registered
Output

Output

(Optional)

D Q

O

DI1

6
8

SPRAM64

A[6:1]
WA[8:1]
CLK
WE

O6

DI1

6
8

SPRAM64

A[6:1]
WA[8:1]
CLK
WE

O6
F7AMUX

A6 (CX)

A6 (AX)

A7 (BX)

Example configuration:
Single-port 256b x 1,

registered output.

A 128 x 32b LUT RAM
has a 1.1ns access time.

18

Spring 2009 EECS150 - Lec03-FPGA Page

Distributed RAM Primitives

19

178 www.xilinx.com Virtex-5 FPGA User Guide
UG190 (v4.2) May 9, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

SRHIGH and SRLOW can be set individually for each storage element in a slice. The choice
of synchronous (SYNC) or asynchronous (ASYNC) set/reset (SRTYPE) cannot be set
individually for each storage element in a slice.

The initial state after configuration or global initial state is defined by separate INIT0 and
INIT1 attributes. By default, setting the SRLOW attribute sets INIT0, and setting the
SRHIGH attribute sets INIT1. Virtex-5 devices can set INIT0 and INIT1 independent of
SRHIGH and SRLOW.

The configuration options for the set and reset functionality of a register or a latch are as
follows:

! No set or reset

! Synchronous set

! Synchronous reset

! Synchronous set and reset

! Asynchronous set (preset)

! Asynchronous reset (clear)

! Asynchronous set and reset (preset and clear)

Distributed RAM and Memory (Available in SLICEM only)

Multiple LUTs in a SLICEM can be combined in various ways to store larger amount of
data.

The function generators (LUTs) in SLICEMs can be implemented as a synchronous RAM
resource called a distributed RAM element. RAM elements are configurable within a
SLICEM to implement the following:

! Single-Port 32 x 1-bit RAM

! Dual-Port 32 x 1-bit RAM

! Quad-Port 32 x 2-bit RAM

! Simple Dual-Port 32 x 6-bit RAM

! Single-Port 64 x 1-bit RAM

! Dual-Port 64 x 1-bit RAM

! Quad-Port 64 x 1-bit RAM

! Simple Dual-Port 64 x 3-bit RAM

! Single-Port 128 x 1-bit RAM

! Dual-Port 128 x 1-bit RAM

! Single-Port 256 x 1-bit RAM

Distributed RAM modules are synchronous (write) resources. A synchronous read can be
implemented with a storage element or a flip-flop in the same slice. By placing this flip-flop,
the distributed RAM performance is improved by decreasing the delay into the clock-to-out value of
the flip-flop. However, an additional clock latency is added. The distributed elements share the
same clock input. For a write operation, the Write Enable (WE) input, driven by either the
CE or WE pin of a SLICEM, must be set High.

All are built from a single slice or less.

Remember, though, that the SLICEM LUT
is naturally only 1 read and 1 write port.

Spring 2009 EECS150 - Lec03-FPGA Page

Example Dual Port Configurations

20

Spring 2009 EECS150 - Lec03-FPGA Page

Distributed RAM Timing

21

Spring 2009 EECS150 - Lec03-FPGA Page 22

Spring 2009 EECS150 - Lec03-FPGA Page

Block RAM Overview

23

• 36K bits of data total, can be configured as:
– 2 independent 18Kb RAMs, or one 36Kb RAM.

• Each 36Kb block RAM can be configured as:
– 64Kx1 (when cascaded with an adjacent 36Kb block

RAM), 32Kx1, 16Kx2, 8Kx4, 4Kx9, 2Kx18, or 1Kx36
memory.

• Each 18Kb block RAM can be configured as:
– 16Kx1, 8Kx2, 4Kx4, 2Kx9, or 1Kx18 memory.

• Write and Read are synchronous operations.

• The two ports are symmetrical and totally
independent (can have different clocks), sharing
only the stored data.

• Each port can be configured in one of the
available widths, independent of the other port.
The read port width can be different from the
write port width for each port.

• The memory content can be initialized or cleared
by the configuration bitstream.

Spring 2009 EECS150 - Lec03-FPGA Page

Block RAM Timing

24

• Note this is in the default mode, “WRITE_FIRST”. Other
possible modes are “READ_FIRST”, and “NO_CHANGE”.

• Optional output register, would delay appearance of output
data by one cycle.

• Maximum clock rate, roughly 400MHz.

Spring 2012 EECS150 - Lec10-sram1 Page

Verilog Synthesis Notes
• Block RAMS and LUT RAMS all exist as primitive library

elements (similar to FDRSE). However, it is much more
convenient to use inference.

• Depending on how you write your verilog, you will get either a
collection of block RAMs, a collection of LUT RAMs, or a
collection of flip-flops.

• The synthesizer uses size, and read style (synch versus asynch)
to determine the best primitive type to use.

• It is possible to force mapping to a particular primitive by using
synthesis directives. However, if you write your verilog
correctly, you will not need to use directives.

• The synthesizer has limited capabilities (eg., it can combine
primitives for more depth and width, but is limited on porting
options). Be careful, as you might not get what you want.

• See Synplify User Guide, and XST User Guide for examples.
25

Spring 2012 EECS150 - Lec10-sram1 Page

Inferring RAMs in Verilog

26

 // 64X1 RAM implementation using distributed RAM

 module ram64X1 (clk, we, d, addr, q);
input clk, we, d;
input [5:0] addr;
output q;

 reg [63:0] temp;
 always @ (posedge clk)

if(we)
 temp[addr] <= d;

 assign q = temp[addr];

 endmodule

Asynchronous read
infers LUT RAM

Verilog reg array used with
“always @ (posedge ... infers

memory array.

Spring 2012 EECS150 - Lec10-sram1 Page

Dual-read-port LUT RAM

27

//
// Multiple-Port RAM Descriptions
//
module v_rams_17 (clk, we, wa, ra1, ra2, di, do1, do2);
 input clk;
 input we;
 input [5:0] wa;
 input [5:0] ra1;
 input [5:0] ra2;
 input [15:0] di;
 output [15:0] do1;
 output [15:0] do2;
 reg [15:0] ram [63:0];
 always @(posedge clk)
 begin
 if (we)
 ram[wa] <= di;
 end
 assign do1 = ram[ra1];
 assign do2 = ram[ra2];
endmodule

Multiple reference to
same array.

Spring 2012 EECS150 - Lec10-sram1 Page

Block RAM Inference

28

//
// Single-Port RAM with Synchronous Read
//
module v_rams_07 (clk, we, a, di, do);
 input clk;
 input we;
 input [5:0] a;
 input [15:0] di;
 output [15:0] do;
 reg [15:0] ram [63:0];
 reg [5:0] read_a;
 always @(posedge clk) begin
 if (we)
 ram[a] <= di;
 read_a <= a;
 end
 assign do = ram[read_a];
endmodule

Synchronous read
(registered read address)

infers Block RAM

Spring 2012 EECS150 - Lec10-sram1 Page

Block RAM initialization

29

module RAMB4_S4 (data_out, ADDR, data_in, CLK, WE);
 output[3:0] data_out;
 input [2:0] ADDR;
 input [3:0] data_in;
 input CLK, WE;
 reg [3:0] mem [7:0];
 reg [3:0] read_addr;

 initial
 begin
 $readmemb("data.dat", mem);
 end

 always@(posedge CLK)
 read_addr <= ADDR;

 assign data_out = mem[read_addr];

 always @(posedge CLK)
 if (WE) mem[ADDR] = data_in;

 endmodule

“data.dat” contains initial RAM
contents, it gets put into the bitfile
and loaded at configuration time.
(Remake bits to change contents)

Spring 2012 EECS150 - Lec10-sram1 Page

Dual-Port Block RAM

30

module test (data0,data1,waddr0,waddr1,we0,we1,clk0, clk1, q0, q1);

 parameter d_width = 8; parameter addr_width = 8; parameter mem_depth = 256;

 input [d_width-1:0] data0, data1;
 input [addr_width-1:0] waddr0, waddr1;
 input we0, we1, clk0, clk1;

 reg [d_width-1:0] mem [mem_depth-1:0]
 reg [addr_width-1:0] reg_waddr0, reg_waddr1;
 output [d_width-1:0] q0, q1;

 assign q0 = mem[reg_waddr0];
 assign q1 = mem[reg_waddr1];

 always @(posedge clk0)
 begin
 if (we0)
 mem[waddr0] <= data0;
 reg_waddr0 <= waddr0;
 end

 always @(posedge clk1)
 begin
 if (we1)
 mem[waddr1] <= data1;
 reg_waddr1 <= waddr1;
 end

 endmodule

Spring 2012 EECS150 - Lec10-sram1 Page

Processor Design Considerations (1/2)
• Register File: Consider distributed RAM (LUT RAM)

– Size is close to what is needed: distributed RAM primitive
configurations are 32 or 64 bits deep. Extra width is easily
achieved by parallel arrangements.

– LUT-RAM configurations offer multi-porting options - useful for
register files.

– Asynchronous read, might be useful by providing flexibility on where
to put register read in the pipeline.

• Instruction / Data Caches : Consider Block RAM
– Higher density, lower cost for large number of bits
– A single 36kbit Block RAM implements 1K 32-bit words.
– Configuration stream based initialization, permits a simple “boot

strap” procedure.

• Other Memories? FIFOs? Video “Frame Buffer”? How big?
31

Spring 2012 EECS150 - Lec10-sram1 Page

XUP Board External SRAM

32

More generally, how does software
interface to I/O devices?

*ZBT (ZBT stands for zero bus
turnaround) — the turnaround is
the number of clock cycles it
takes to change access to the
SRAM from write to read and
vice versa. The turnaround for
ZBT SRAMs or the latency
between read and write cycle is
zero.

“ZBT” synchronous
SRAM, 9 Mb on
32-bit data bus,
with four “parity”
bits
256K x 36 bits
(located under the
removable LCD)

Spring 2012 EECS150 - Lec10-sram1 Page

XUP Board External DRAM

33

More generally, how does software
interface to I/O devices?

*SO-DIMM stands for small
outline dual in-line memory
module. SO-DIMMS are often
used in systems which have space
restrictions such as notebooks.
*DDR2 stands for second
generation double data rate.
DDR transfers data both on the
rising and falling edges of the
clock signal.

256 MByte DDR2
DRAM with
400MHz data rate.

