
Spring 2012 EECS150 - Lec17-fsm Page

EECS150 - Digital Design
Lecture 17 - Finite State Machines

Revisited

March 13, 2012
John Wawrzynek

1

Spring 2012 EECS150 - Lec17-FSM Page

Finite State Machines (FSMs)
• FSM circuits are a type of

sequential circuit:
– output depends on present and

past inputs
• effect of past inputs is

represented by the current state

• Behavior is represented by
State Transition Diagram:
– traverse one edge per clock

cycle.

2

Spring 2012 EECS150 - Lec17-FSM Page

FSM Implementation

• Flip-flops form state register
• number of states ≤ 2number of flip-flops

• CL (combinational logic) calculates next state and output
• Remember: The FSM follows exactly one edge per cycle.

So far we have learned how to implement in Verilog. Now
we learn how to design “by hand” to the gate level.

3

Spring 2012 EECS150 - Lec17-FSM Page

Parity Checker Example
A string of bits has “even parity” if the number of 1’s in the string is even.
• Design a circuit that accepts a bit-serial stream of bits and outputs a 0 if

the parity thus far is even and outputs a 1 if odd:

Next we take this example through the “formal design process”.
But first, can you guess a circuit that performs this function?

4

Spring 2012 EECS150 - Lec17-FSM Page

Formal Design Process

“State Transition Diagram”
– circuit is in one of two “states”.
– transition on each cycle with

each new input, over exactly one
arc (edge).

– Output depends on which state
the circuit is in.

5

Spring 2012 EECS150 - Lec17-FSM Page

Formal Design Process
State Transition Table:

Invent a code to represent states:
Let 0 = EVEN state, 1 = ODD state

present next
state OUT IN state

 EVEN 0 0 EVEN
 EVEN 0 1 ODD
 ODD 1 0 ODD
 ODD 1 1 EVEN

present state (ps) OUT IN next state (ns)
 0 0 0 0
 0 0 1 1
 1 1 0 1
 1 1 1 0

Derive logic equations
from table (how?):
OUT = PS
NS = PS xor IN

6

Spring 2012 EECS150 - Lec17-FSM Page

Formal Design Process

• Circuit Diagram:

– XOR gate for NS calculation
– DFF to hold present state
– no logic needed for output in

this example.

Logic equations from table:
OUT = PS
NS = PS xor IN

nsps

7

Spring 2012 EECS150 - Lec17-FSM Page

Formal Design Process
Review of Design Steps:

 1. Specify circuit function (English)
 2. Draw state transition diagram
 3. Write down symbolic state transition table
 4. Write down encoded state transition table
 5. Derive logic equations
 6. Derive circuit diagram
 Register to hold state
 Combinational Logic for Next State and Outputs

8

Spring 2012 EECS150 - Lec17-FSM Page

Combination Lock Example

• Used to allow entry to a locked room:
2-bit serial combination. Example 01,11:
 1. Set switches to 01, press ENTER
 2. Set switches to 11, press ENTER
 3. OPEN is asserted (OPEN=1).
 If wrong code, ERROR is asserted (after second combo word entry).
 Press Reset at anytime to try again.

9

Spring 2012 EECS150 - Lec17-FSM Page

Combinational Lock STD

Assume the ENTER
button when pressed
generates a pulse for
only one clock cycle.

10

Spring 2012 EECS150 - Lec17-FSM Page

Symbolic State Transition Table
RESET ENTER COM1 COM2 Preset State Next State OPEN ERROR
0 0 * * START START 0 0
0 1 0 * START BAD1 0 0
0 1 1 * START OK1 0 0
0 0 * * OK1 OK1 0 0
0 1 * 0 OK1 BAD2 0 0
0 1 * 1 OK1 OK2 0 0
0 * * * OK2 OK2 1 0
0 0 * * BAD1 BAD1 0 0
0 1 * * BAD1 BAD2 0 0
0 * * * BAD2 BAD2 0 1
1 * * * * START 0 0

Decoder logic for checking
combination (01,11):

11

Spring 2012 EECS150 - Lec17-FSM Page

Encoded ST Table
• Assign states:

START=000, OK1=001, OK2=011
BAD1=100, BAD2=101

• Omit reset. Assume that primitive flip-flops has reset
input.

• Rows not shown have don’t cares in output.
Correspond to invalid PS values.

• What are the output functions for OPEN and ERROR?

NS2 NS1 NS0

12

Spring 2012 EECS150 - Lec17-FSM Page

State Encoding

• In general:
 # of possible FSM state = 2# of Flip-flops

 Example:
 state1 = 01, state2 = 11, state3 = 10, state4 = 00

• However, often more than log2(# of states) FFs are
used, to simplify logic at the cost of more FFs.

• Extreme example is one-hot state encoding.

13

Spring 2012 EECS150 - Lec17-FSM Page

State Encoding
• One-hot encoding of states.
• One FF per state.

• Why one-hot encoding?
– Simple design procedure.

• Circuit matches state transition diagram (example next page).
– Often can lead to simpler and faster “next state” and output logic.

• Why not do this?
– Can be costly in terms of Flip-flops for FSMs with large number of

states.
• FPGAs are “Flip-flop rich”, therefore one-hot state machine

encoding is often a good approach.

14

Spring 2012 EECS150 - Lec17-FSM Page

One-hot encoded FSM
• Even Parity Checker Circuit:

• In General: • FFs must be initialized for
correct operation (only one 1)

Circuit generated
through direct
inspection of the STD.

15

Spring 2012 EECS150 - Lec17-FSM Page

One-hot encoded combination lock

16

Spring 2012 EECS150 - Lec17-FSM Page

FSM Implementation Notes
• General FSM form:

• All examples so far generate
output based only on the present
state:

• Commonly name Moore Machine
 (If output functions include both

present state and input then called
a Mealy Machine)

17

Spring 2012 EECS150 - Lec17-FSM Page

Finite State Machines
• Example: Edge Detector
 Bit are received one at a time (one per cycle),
 such as: 000111010 time

 Design a circuit that asserts
 its output for one cycle when
 the input bit stream changes
 from 0 to 1.

 Try two different solutions.

FSM

CLK

IN OUT

18

Spring 2012 EECS150 - Lec17-FSM Page

State Transition Diagram Solution A

IN PS NS OUT
 0 00 00 0
 1 00 01 0
 0 01 00 1
 1 01 11 1
 0 11 00 0
 1 11 11 0

ZERO

CHANGE

ONE

19

Spring 2012 EECS150 - Lec17-FSM Page

Solution A, circuit derivation

IN PS NS OUT
 0 00 00 0
 1 00 01 0
 0 01 00 1
 1 01 11 1
 0 11 00 0
 1 11 11 0

ZERO

CHANGE

ONE

20

Spring 2012 EECS150 - Lec17-FSM Page

Solution B
Output depends not only on PS but also on input, IN

IN PS NS OUT
 0 0 0 0
 0 1 0 0
 1 0 1 1
 1 1 1 0

Let ZERO=0,
 ONE=1

NS = IN, OUT = IN PS’

What’s the intuition about this solution?

21

Spring 2012 EECS150 - Lec17-FSM Page

Edge detector timing diagrams

• Solution A: output follows the clock
• Solution B: output changes with input rising edge and is

asynchronous wrt the clock.

22

Spring 2012 EECS150 - Lec17-FSM Page

FSM Comparison
Solution A

Moore Machine
• output function only of PS
• maybe more states (why?)
• synchronous outputs

– no glitches
– one cycle “delay”
– full cycle of stable output

Solution B
Mealy Machine

• output function of both PS & input
• maybe fewer states
• asynchronous outputs

– if input glitches, so does output
– output immediately available
– output may not be stable long

enough to be useful (below):

If output of Mealy FSM
goes through combinational
logic before being
registered, the CL might
delay the signal and it could
be missed by the clock edge.

23

Spring 2012 EECS150 - Lec17-FSM Page

FSM Recap
Moore Machine Mealy Machine

Both machine types allow one-hot implementations.

24

Spring 2012 EECS150 - Lec17-FSM Page

Final Notes on Moore versus Mealy
1. A given state machine could have both Moore and Mealy

style outputs. Nothing wrong with this, but you need to be
aware of the timing differences between the two types.

2. The output timing behavior of the Moore machine can be
achieved in a Mealy machine by “registering” the Mealy
output values:

25

Spring 2012 EECS150 - Lec17-FSM Page

General FSM Design Process with Verilog
ImplementationDesign Steps:

 1. Specify circuit function (English)
 2. Draw state transition diagram
 3. Write down symbolic state transition table
 4. Assign encodings (bit patterns) to symbolic states
 5. Code as Verilog behavioral description

 Use parameters to represent encoded states.
 Use separate always blocks for register assignment and CL

logic block.
 Use case for CL block. Within each case section assign all

outputs and next state value based on inputs. Note: For
Moore style machine make outputs dependent only on state
not dependent on inputs.

26

Spring 2012 EECS150 - Lec17-FSM Page

FSMs in Verilog

always @(posedge clk)
 if (rst) ps <= ZERO;
 else ps <= ns;
always @(ps in)
 case (ps)
 ZERO: if (in) begin
 out = 1’b1;
 ns = ONE;
 end
 else begin
 out = 1’b0;
 ns = ZERO;
 end
 ONE: if (in) begin
 out = 1’b0;
 ns = ONE;
 end
 else begin
 out = 1’b0;
 ns = ZERO;
 end
 default: begin
 out = 1’bx;
 ns = default;
 end

always @(posedge clk)
 if (rst) ps <= ZERO;
 else ps <= ns;
always @(ps in)
 case (ps)
 ZERO: begin
 out = 1’b0;
 if (in) ns = CHANGE;
 else ns = ZERO;
 end
 CHANGE: begin
 out = 1’b1;
 if (in) ns = ONE;
 else ns = ZERO;
 end
 ONE: begin
 out = 1’b0;
 if (in) ns = ONE;
 else ns = ZERO;
 default: begin
 out = 1’bx;
 ns = default;
 end

Mealy Machine Moore Machine

27

