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Performance, Cost, Power

• How do we measure performance?
operations/sec?  cycles/sec?

• Performance is directly proportional to clock frequency.  
Although it may not be the entire story:

       Ex: CPU performance 
                      = # instructions X CPI X clock period

2



Spring 2012 EECS150 - Lec13-timing1 Page 

Timing Analysis
1600 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 11, NOVEMBER 2001

Fig. 1. Process SEM cross section.

The process was raised from [1] to limit standby power.

Circuit design and architectural pipelining ensure low voltage

performance and functionality. To further limit standby current

in handheld ASSPs, a longer poly target takes advantage of the

versus dependence and source-to-body bias is used

to electrically limit transistor in standby mode. All core

nMOS and pMOS transistors utilize separate source and bulk

connections to support this. The process includes cobalt disili-

cide gates and diffusions. Low source and drain capacitance, as

well as 3-nm gate-oxide thickness, allow high performance and

low-voltage operation.

III. ARCHITECTURE

The microprocessor contains 32-kB instruction and data

caches as well as an eight-entry coalescing writeback buffer.

The instruction and data cache fill buffers have two and four

entries, respectively. The data cache supports hit-under-miss

operation and lines may be locked to allow SRAM-like oper-

ation. Thirty-two-entry fully associative translation lookaside

buffers (TLBs) that support multiple page sizes are provided

for both caches. TLB entries may also be locked. A 128-entry

branch target buffer improves branch performance a pipeline

deeper than earlier high-performance ARM designs [2], [3].

A. Pipeline Organization

To obtain high performance, the microprocessor core utilizes

a simple scalar pipeline and a high-frequency clock. In addition

to avoiding the potential power waste of a superscalar approach,

functional design and validation complexity is decreased at the

expense of circuit design effort. To avoid circuit design issues,

the pipeline partitioning balances the workload and ensures that

no one pipeline stage is tight. The main integer pipeline is seven

stages, memory operations follow an eight-stage pipeline, and

when operating in thumb mode an extra pipe stage is inserted

after the last fetch stage to convert thumb instructions into ARM

instructions. Since thumb mode instructions [11] are 16 b, two

instructions are fetched in parallel while executing thumb in-

structions. A simplified diagram of the processor pipeline is

Fig. 2. Microprocessor pipeline organization.

shown in Fig. 2, where the state boundaries are indicated by

gray. Features that allow the microarchitecture to achieve high

speed are as follows.

The shifter and ALU reside in separate stages. The ARM in-

struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-

ergy consumed to complete a given task. Conventional wisdom

has been that shorter pipelines are more efficient due to re-
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Example

• Parallel to serial converter: 

a

b T ! time(clk"Q) + time(mux) + time(setup)

T ! #clk"Q + #mux + #setup

clk

f T
1 MHz 1 μs

10 MHz 100 ns
100 MHz 10 ns

1 GHz 1 ns

Timing Analysis
What is the 

smallest T that 
produces correct 

operation?

3

ARM processor Microarch
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Timing Analysis and Logic Delay

If T > worst-case delay through CL, does 
this ensure correct operation? 

1600 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 11, NOVEMBER 2001
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struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-
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General C/L Cell Delay Model

° Combinational Cell (symbol) is fully specified by:
• functional (input -> output) behavior

- truth-table, logic equation, VHDL

• Input load factor of each input

• Propagation delay from each input to each output for each transition

- THL(A, o) = Fixed Internal Delay + Load-dependent-delay x load 

° Linear model composes

Cout

Vout

Cout

Delay

Va -> Vout

X
X

X

X

X

X

Ccritical

delay per unit load

A

B

X

.

.

.

Combinational

Logic Cell

Internal Delay
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Storage Element’s Timing Model

Clk

D Q

° Setup Time: Input must be stable BEFORE trigger clock edge

° Hold Time: Input must REMAIN stable after trigger clock edge

° Clock-to-Q time:

• Output cannot change instantaneously at the trigger clock edge

• Similar to delay in logic gates, two components:

- Internal Clock-to-Q

- Load dependent Clock-to-Q

Don’t Care Don’t Care

HoldSetup

D

Unknown

Clock-to-Q

Q
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Clocking Methodology

Clk

Combination Logic

.

.

.

.

.

.

.

.

.

.

.

.

° All storage elements are clocked by the same clock 
edge

° The combination logic blocks:
• Inputs are updated at each clock tick

• All outputs MUST be stable before the next clock tick
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Critical Path & Cycle Time

Clk

.

.

.

.

.

.

.

.

.

.

.

.

° Critical path: the slowest path between any two storage 
devices

° Cycle time is a function of the critical path

° must be greater than:

Clock-to-Q + Longest Path through Combination Logic + Setup
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Storage Element’s Timing Model
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Clocking Methodology
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Critical Path & Cycle Time
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Limitations on Clock Rate

1 Logic Gate Delay 2 Delays in flip-flops

• What must happen in one clock cycle for correct operation?
– All signals connected to FF (or memory) inputs must be 

ready and “setup” before rising edge of clock. 
– For now we assume perfect clock distribution (all flip-flops 

see the clock at the same time).
5

What are typical delay values?
Both times contribute to 
limiting the clock period.
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Example

Parallel to serial 
converter circuit 

T ≥ time(clk→Q) + time(mux) + time(setup)
T ≥ τclk→Q + τmux + τsetupa

b

clk

6
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In General ...

T ≥ τclk→Q + τCL + τsetup

7

For correct operation:

for all paths.

• How do we enumerate all paths?
– Any circuit input or register output to any register input or 

circuit output?
• Note: 

– “setup time” for outputs is a function of what it connects to.
– “clk-to-q” for circuit inputs depends on where it comes from.
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CL Delay: Transistors as water valves
If electrons are water molecules,

and a capacitor a bucket ...

A “on” p-FET fills
up the capacitor 

with charge. 
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Delay Model:

CMOS
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Review: General C/L Cell Delay Model

° Combinational Cell (symbol) is fully specified by:
• functional (input -> output) behavior

- truth-table, logic equation, VHDL

• load factor of each input

• critical propagation delay from each input to each output for each 
transition

- THL(A, o) = Fixed Internal Delay + Load-dependent-delay x load 

° Linear model composes
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Basic Technology: CMOS

° CMOS: Complementary Metal Oxide Semiconductor
• NMOS (N-Type Metal Oxide Semiconductor) transistors

• PMOS (P-Type Metal Oxide Semiconductor) transistors

° NMOS Transistor
• Apply a HIGH (Vdd) to its gate

turns the transistor into a “conductor”

• Apply a LOW (GND) to its gate
shuts off the conduction path

° PMOS Transistor
• Apply a HIGH (Vdd) to its gate

shuts off the conduction path

• Apply a LOW (GND) to its gate
turns the transistor into a “conductor”

Vdd = 5V

GND = 0v

Vdd = 5V

GND = 0v
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Basic Components: CMOS Inverter

Vdd

Circuit

° Inverter Operation

OutIn

Symbol
PMOS

NMOS

In Out

Vdd

Open

Charge

Vout
Vdd

Vdd

Out

Open

Discharge

Vin

Vdd

Vdd

A “on” n-FET 
empties the bucket.
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Delay Model:

CMOS
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Basic Components: CMOS Inverter

Vdd

Circuit

° Inverter Operation

OutIn
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Vdd

Vdd
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This model is often good enough ... 8
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Transistors as Conductors
• Improved Transistor Model:  

nFET • We refer to transistor "strength" as 
the amount of current that flows for 
a given Vds and Vgs. 

• The strength is linearly proportional 
to the ratio of W/L. 

pFET

9
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Gate Delay is the Result of Cascading
• Cascaded gates:

“transfer curve” for inverter.

10
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Delay in Flip-flops
• Setup time results from delay 

through first latch.

clk

clk’

clk

clk’

clk

clk’

clk

clk’

11

Clock to Q delay results from 
delay through second latch.
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Wire Delay
• Ideally, wires behave as 

“transmission lines”:
– signal wave-front moves close 

to the speed of light
• ~1ft/ns

– Time from source to 
destination is called the 
“transit time”.

– In ICs most wires are short, 
and the transit times are 
relatively short compared to 
the clock period and can be 
ignored.

– Not so on PC boards.

12



Spring 2012 EECS150 - Lec13-timing1 Page 

Wire Delay
• Even in those cases where the 

transmission line effect is 
negligible:
– Wires posses distributed 

resistance and capacitance

– Time constant associated with 
distributed RC is proportional 
to the square of the length

• For short wires on ICs, 
resistance is insignificant 
(relative to effective R of 
transistors), but C is important.
– Typically around half of C of 

gate load is in the wires.
• For long wires on ICs:

– busses, clock lines, global 
control signal, etc.

– Resistance is significant, 
therefore distributed RC effect 
dominates.

– signals are typically “rebuffered” 
to reduce delay:

v1 v2 v3 v4

13

v1

v4
v3

v2

time
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Delay and “Fan-out”

• The delay of a gate is proportional to its output capacitance.  
Connecting the output of gate to more than one other gate increases 
it’s output capacitance.  It takes increasingly longer for the output of 
a gate to reach the switching threshold of the gates it drives as we 
add more output connections.

• Driving wires also contributes to fan-out delay.
• What can be done to remedy this problem in large fan-out situations?

1

3

2

14
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“Critical” Path

• Critical Path: the path in the entire design with the maximum 
delay.
– This could be from state element to state element, or from 

input to state element, or state element to output, or from input 
to output (unregistered paths).

• For example, what is the critical path in this circuit?

• Why do we care about the critical path?

15
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Searching for processor critical path1600 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 11, NOVEMBER 2001

Fig. 1. Process SEM cross section.

The process was raised from [1] to limit standby power.

Circuit design and architectural pipelining ensure low voltage

performance and functionality. To further limit standby current

in handheld ASSPs, a longer poly target takes advantage of the

versus dependence and source-to-body bias is used

to electrically limit transistor in standby mode. All core

nMOS and pMOS transistors utilize separate source and bulk

connections to support this. The process includes cobalt disili-

cide gates and diffusions. Low source and drain capacitance, as

well as 3-nm gate-oxide thickness, allow high performance and

low-voltage operation.

III. ARCHITECTURE

The microprocessor contains 32-kB instruction and data

caches as well as an eight-entry coalescing writeback buffer.

The instruction and data cache fill buffers have two and four

entries, respectively. The data cache supports hit-under-miss

operation and lines may be locked to allow SRAM-like oper-

ation. Thirty-two-entry fully associative translation lookaside

buffers (TLBs) that support multiple page sizes are provided

for both caches. TLB entries may also be locked. A 128-entry

branch target buffer improves branch performance a pipeline

deeper than earlier high-performance ARM designs [2], [3].

A. Pipeline Organization

To obtain high performance, the microprocessor core utilizes

a simple scalar pipeline and a high-frequency clock. In addition

to avoiding the potential power waste of a superscalar approach,

functional design and validation complexity is decreased at the

expense of circuit design effort. To avoid circuit design issues,

the pipeline partitioning balances the workload and ensures that

no one pipeline stage is tight. The main integer pipeline is seven

stages, memory operations follow an eight-stage pipeline, and

when operating in thumb mode an extra pipe stage is inserted

after the last fetch stage to convert thumb instructions into ARM

instructions. Since thumb mode instructions [11] are 16 b, two

instructions are fetched in parallel while executing thumb in-

structions. A simplified diagram of the processor pipeline is

Fig. 2. Microprocessor pipeline organization.

shown in Fig. 2, where the state boundaries are indicated by

gray. Features that allow the microarchitecture to achieve high

speed are as follows.

The shifter and ALU reside in separate stages. The ARM in-

struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-

ergy consumed to complete a given task. Conventional wisdom

has been that shorter pipelines are more efficient due to re-

Must consider all connected register pairs, 
paths from input to register, register to 
output.  Don’t forget the controller.

?

16

• Design tools help in the search.  
– Synthesis tools report delays on paths,  
– Special static timing analyzers accept 

a design netlist and report path delays, 
– and, of course, simulators can be used 

to determine timing performance.

Tools that are expected to do something 
about the timing behavior (such as 
synthesizers), also include provisions for 
specifying input arrival times (relative to the 
clock), and output requirements (set-up 
times of next stage).
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Real Stuff: Timing Analysis

From “The circuit and physical design of the POWER4 microprocessor”, IBM J Res and Dev, 46:1, Jan 2002, J.D. Warnock et al.

netlist. Of these, 121 713 were top-level chip global nets,
and 21 711 were processor-core-level global nets. Against
this model 3.5 million setup checks were performed in late
mode at points where clock signals met data signals in
latches or dynamic circuits. The total number of timing
checks of all types performed in each chip run was
9.8 million. Depending on the configuration of the timing
run and the mix of actual versus estimated design data,
the amount of real memory required was in the range
of 12 GB to 14 GB, with run times of about 5 to 6 hours
to the start of timing-report generation on an RS/6000*
Model S80 configured with 64 GB of real memory.
Approximately half of this time was taken up by reading
in the netlist, timing rules, and extracted RC networks, as

well as building and initializing the internal data structures
for the timing model. The actual static timing analysis
typically took 2.5–3 hours. Generation of the entire
complement of reports and analysis required an additional
5 to 6 hours to complete. A total of 1.9 GB of timing
reports and analysis were generated from each chip timing
run. This data was broken down, analyzed, and organized
by processor core and GPS, individual unit, and, in the
case of timing contracts, by unit and macro. This was one
component of the 24-hour-turnaround time achieved for
the chip-integration design cycle. Figure 26 shows the
results of iterating this process: A histogram of the final
nominal path delays obtained from static timing for the
POWER4 processor.

The POWER4 design includes LBIST and ABIST
(Logic/Array Built-In Self-Test) capability to enable full-
frequency ac testing of the logic and arrays. Such testing
on pre-final POWER4 chips revealed that several circuit
macros ran slower than predicted from static timing. The
speed of the critical paths in these macros was increased
in the final design. Typical fast ac LBIST laboratory test
results measured on POWER4 after these paths were
improved are shown in Figure 27.

Summary
The 174-million-transistor !1.3-GHz POWER4 chip,
containing two microprocessor cores and an on-chip
memory subsystem, is a large, complex, high-frequency
chip designed by a multi-site design team. The
performance and schedule goals set at the beginning of
the project were met successfully. This paper describes
the circuit and physical design of POWER4, emphasizing
aspects that were important to the project’s success in the
areas of design methodology, clock distribution, circuits,
power, integration, and timing.

Figure 25

POWER4 timing flow. This process was iterated daily during the 
physical design phase to close timing.
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Figure 26

Histogram of the POWER4 processor path delays.
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Most paths have hundreds of 
picoseconds to spare.The critical path

17
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Clock Skew

• Unequal delay in distribution of the clock signal to various parts of 
a circuit:
– if not accounted for, can lead to erroneous behavior.
– Comes about because:

• clock wires have delay,
• circuit is designed with a different number of clock buffers from 

the clock source to the various clock loads, or
• buffers have unequal delay.

– All synchronous circuits experience some clock skew:
• more of an issue for high-performance designs operating with very 

little extra time per clock cycle.

clock skew, delay in distribution
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Clock Skew (cont.)

• If clock period T = TCL+Tsetup+Tclk→Q, circuit will fail.

• Therefore:
1. Control clock skew
 a) Careful clock distribution.  Equalize path delay from clock source to 

all clock loads by controlling wires delay and buffer delay.
 b) don’t “gate” clocks in a non-uniform way.
2. T ≥ TCL+Tsetup+Tclk→Q + worst case skew.

• Most modern large high-performance chips (microprocessors) 
control end to end clock skew to a small fraction of the clock period.

clock skew, delay in distribution
CL

CLKCLK’

CLK

CLK’

19



Spring 2012 EECS150 - Lec13-timing1 Page 

Clock Skew (cont.)

• Note reversed buffer.
• In this case, clock skew actually provides extra time (adds to 

the effective clock period).
• This effect has been used to help run circuits as higher 

clock rates.  Risky business!

CL

CLK
CLK’

clock skew, delay in distribution

CLK

CLK’
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Fig. 1. Process SEM cross section.

The process was raised from [1] to limit standby power.

Circuit design and architectural pipelining ensure low voltage

performance and functionality. To further limit standby current

in handheld ASSPs, a longer poly target takes advantage of the

versus dependence and source-to-body bias is used

to electrically limit transistor in standby mode. All core

nMOS and pMOS transistors utilize separate source and bulk

connections to support this. The process includes cobalt disili-

cide gates and diffusions. Low source and drain capacitance, as

well as 3-nm gate-oxide thickness, allow high performance and

low-voltage operation.

III. ARCHITECTURE

The microprocessor contains 32-kB instruction and data

caches as well as an eight-entry coalescing writeback buffer.

The instruction and data cache fill buffers have two and four

entries, respectively. The data cache supports hit-under-miss

operation and lines may be locked to allow SRAM-like oper-

ation. Thirty-two-entry fully associative translation lookaside

buffers (TLBs) that support multiple page sizes are provided

for both caches. TLB entries may also be locked. A 128-entry

branch target buffer improves branch performance a pipeline

deeper than earlier high-performance ARM designs [2], [3].

A. Pipeline Organization

To obtain high performance, the microprocessor core utilizes

a simple scalar pipeline and a high-frequency clock. In addition

to avoiding the potential power waste of a superscalar approach,

functional design and validation complexity is decreased at the

expense of circuit design effort. To avoid circuit design issues,

the pipeline partitioning balances the workload and ensures that

no one pipeline stage is tight. The main integer pipeline is seven

stages, memory operations follow an eight-stage pipeline, and

when operating in thumb mode an extra pipe stage is inserted

after the last fetch stage to convert thumb instructions into ARM

instructions. Since thumb mode instructions [11] are 16 b, two

instructions are fetched in parallel while executing thumb in-

structions. A simplified diagram of the processor pipeline is

Fig. 2. Microprocessor pipeline organization.

shown in Fig. 2, where the state boundaries are indicated by

gray. Features that allow the microarchitecture to achieve high

speed are as follows.

The shifter and ALU reside in separate stages. The ARM in-

struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-

ergy consumed to complete a given task. Conventional wisdom

has been that shorter pipelines are more efficient due to re-

Real Stuff: Floorplanning Intel XScale 80200
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the total wire delay is similar to the total buffer delay. A
patented tuning algorithm [16] was required to tune the
more than 2000 tunable transmission lines in these sector
trees to achieve low skew, visualized as the flatness of the
grid in the 3D visualizations. Figure 8 visualizes four of
the 64 sector trees containing about 125 tuned wires
driving 1/16th of the clock grid. While symmetric H-trees
were desired, silicon and wiring blockages often forced
more complex tree structures, as shown. Figure 8 also
shows how the longer wires are split into multiple-fingered
transmission lines interspersed with Vdd and ground shields
(not shown) for better inductance control [17, 18]. This
strategy of tunable trees driving a single grid results in low
skew among any of the 15 200 clock pins on the chip,
regardless of proximity.

From the global clock grid, a hierarchy of short clock
routes completed the connection from the grid down to
the individual local clock buffer inputs in the macros.
These clock routing segments included wires at the macro
level from the macro clock pins to the input of the local
clock buffer, wires at the unit level from the macro clock
pins to the unit clock pins, and wires at the chip level
from the unit clock pins to the clock grid.

Design methodology and results
This clock-distribution design method allows a highly
productive combination of top-down and bottom-up design
perspectives, proceeding in parallel and meeting at the
single clock grid, which is designed very early. The trees
driving the grid are designed top-down, with the maximum
wire widths contracted for them. Once the contract for the
grid had been determined, designers were insulated from
changes to the grid, allowing necessary adjustments to the
grid to be made for minimizing clock skew even at a very
late stage in the design process. The macro, unit, and chip
clock wiring proceeded bottom-up, with point tools at
each hierarchical level (e.g., macro, unit, core, and chip)
using contracted wiring to form each segment of the total
clock wiring. At the macro level, short clock routes
connected the macro clock pins to the local clock buffers.
These wires were kept very short, and duplication of
existing higher-level clock routes was avoided by allowing
the use of multiple clock pins. At the unit level, clock
routing was handled by a special tool, which connected the
macro pins to unit-level pins, placed as needed in pre-
assigned wiring tracks. The final connection to the fixed

Figure 6

Schematic diagram of global clock generation and distribution.
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Figure 7

3D visualization of the entire global clock network. The x and y 
coordinates are chip x, y, while the z axis is used to represent 
delay, so the lowest point corresponds to the beginning of the 
clock distribution and the final clock grid is at the top. Widths are 
proportional to tuned wire width, and the three levels of buffers 
appear as vertical lines.
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Visualization of four of the 64 sector trees driving the clock grid, 
using the same representation as Figure 7. The complex sector 
trees and multiple-fingered transmission lines used for inductance 
control are visible at this scale.
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the total wire delay is similar to the total buffer delay. A
patented tuning algorithm [16] was required to tune the
more than 2000 tunable transmission lines in these sector
trees to achieve low skew, visualized as the flatness of the
grid in the 3D visualizations. Figure 8 visualizes four of
the 64 sector trees containing about 125 tuned wires
driving 1/16th of the clock grid. While symmetric H-trees
were desired, silicon and wiring blockages often forced
more complex tree structures, as shown. Figure 8 also
shows how the longer wires are split into multiple-fingered
transmission lines interspersed with Vdd and ground shields
(not shown) for better inductance control [17, 18]. This
strategy of tunable trees driving a single grid results in low
skew among any of the 15 200 clock pins on the chip,
regardless of proximity.

From the global clock grid, a hierarchy of short clock
routes completed the connection from the grid down to
the individual local clock buffer inputs in the macros.
These clock routing segments included wires at the macro
level from the macro clock pins to the input of the local
clock buffer, wires at the unit level from the macro clock
pins to the unit clock pins, and wires at the chip level
from the unit clock pins to the clock grid.

Design methodology and results
This clock-distribution design method allows a highly
productive combination of top-down and bottom-up design
perspectives, proceeding in parallel and meeting at the
single clock grid, which is designed very early. The trees
driving the grid are designed top-down, with the maximum
wire widths contracted for them. Once the contract for the
grid had been determined, designers were insulated from
changes to the grid, allowing necessary adjustments to the
grid to be made for minimizing clock skew even at a very
late stage in the design process. The macro, unit, and chip
clock wiring proceeded bottom-up, with point tools at
each hierarchical level (e.g., macro, unit, core, and chip)
using contracted wiring to form each segment of the total
clock wiring. At the macro level, short clock routes
connected the macro clock pins to the local clock buffers.
These wires were kept very short, and duplication of
existing higher-level clock routes was avoided by allowing
the use of multiple clock pins. At the unit level, clock
routing was handled by a special tool, which connected the
macro pins to unit-level pins, placed as needed in pre-
assigned wiring tracks. The final connection to the fixed
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Schematic diagram of global clock generation and distribution.
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coordinates are chip x, y, while the z axis is used to represent 
delay, so the lowest point corresponds to the beginning of the 
clock distribution and the final clock grid is at the top. Widths are 
proportional to tuned wire width, and the three levels of buffers 
appear as vertical lines.
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Visualization of four of the 64 sector trees driving the clock grid, 
using the same representation as Figure 7. The complex sector 
trees and multiple-fingered transmission lines used for inductance 
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clock grid was completed with a tool run at the chip level,
connecting unit-level pins to the grid. At this point, the
clock tuning and the bottom-up clock routing process still
have a great deal of flexibility to respond rapidly to even
late changes. Repeated practice routing and tuning were
performed by a small, focused global clock team as the
clock pins and buffer placements evolved to guarantee
feasibility and speed the design process.

Measurements of jitter and skew can be carried out
using the I/Os on the chip. In addition, approximately 100
top-metal probe pads were included for direct probing
of the global clock grid and buffers. Results on actual
POWER4 microprocessor chips show long-distance
skews ranging from 20 ps to 40 ps (cf. Figure 9). This is
improved from early test-chip hardware, which showed
as much as 70 ps skew from across-chip channel-length
variations [19]. Detailed waveforms at the input and
output of each global clock buffer were also measured
and compared with simulation to verify the specialized
modeling used to design the clock grid. Good agreement
was found. Thus, we have achieved a “correct-by-design”
clock-distribution methodology. It is based on our design
experience and measurements from a series of increasingly
fast, complex server microprocessors. This method results
in a high-quality global clock without having to use
feedback or adjustment circuitry to control skews.

Circuit design
The cycle-time target for the processor was set early in the
project and played a fundamental role in defining the
pipeline structure and shaping all aspects of the circuit
design as implementation proceeded. Early on, critical
timing paths through the processor were simulated in
detail in order to verify the feasibility of the design
point and to help structure the pipeline for maximum
performance. Based on this early work, the goal for the
rest of the circuit design was to match the performance set
during these early studies, with custom design techniques
for most of the dataflow macros and logic synthesis for
most of the control logic—an approach similar to that
used previously [20]. Special circuit-analysis and modeling
techniques were used throughout the design in order to
allow full exploitation of all of the benefits of the IBM
advanced SOI technology.

The sheer size of the chip, its complexity, and the
number of transistors placed some important constraints
on the design which could not be ignored in the push to
meet the aggressive cycle-time target on schedule. These
constraints led to the adoption of a primarily static-circuit
design strategy, with dynamic circuits used only sparingly
in SRAMs and other critical regions of the processor core.
Power dissipation was a significant concern, and it was a
key factor in the decision to adopt a predominantly static-
circuit design approach. In addition, the SOI technology,

including uncertainties associated with the modeling
of the floating-body effect [21–23] and its impact on
noise immunity [22, 24 –27] and overall chip decoupling
capacitance requirements [26], was another factor behind
the choice of a primarily static design style. Finally, the
size and logical complexity of the chip posed risks to
meeting the schedule; choosing a simple, robust circuit
style helped to minimize overall risk to the project
schedule with most efficient use of CAD tool and design
resources. The size and complexity of the chip also
required rigorous testability guidelines, requiring almost
all cycle boundary latches to be LSSD-compatible for
maximum dc and ac test coverage.

Another important circuit design constraint was the
limit placed on signal slew rates. A global slew rate limit
equal to one third of the cycle time was set and enforced
for all signals (local and global) across the whole chip.
The goal was to ensure a robust design, minimizing
the effects of coupled noise on chip timing and also
minimizing the effects of wiring-process variability on
overall path delay. Nets with poor slew also were found
to be more sensitive to device process variations and
modeling uncertainties, even where long wires and RC
delays were not significant factors. The general philosophy
was that chip cycle-time goals also had to include the
slew-limit targets; it was understood from the beginning
that the real hardware would function at the desired
cycle time only if the slew-limit targets were also met.

The following sections describe how these design
constraints were met without sacrificing cycle time. The
latch design is described first, including a description of
the local clocking scheme and clock controls. Then the
circuit design styles are discussed, including a description

Figure 9

Global clock waveforms showing 20 ps of measured skew.
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