CS 150 Digital Design

Lecture 12 – DRAM

2012-2-23

Professor John Wawrzynek today's lecture by John Lazzaro

TAs: Shaoyi Cheng, Daiwei Li, James Parker

Today's Lecture: DRAM

H DRAM, Xilinx, and You

H DRAM: Bottom-up

DRAM: Top-down

₩

DDR2 SO-DIMM on ML505 Board

DDR2: Double-Data Rate, 2nd generation

SO-DIMM: Small-Outline, Dual Inline Memory Module

CS 150 L12: DRAM

DDR2 SO-DIMM Module

CS 150 L12: DRAM

Project controller: Xilinx-supplied IP

H DRAM, Xilinx, and You

To understand the **H** DRAM: Bottom-up DRAM controller, you need to understand how a DRAM chip **DRAM:** Top-down works. Otherwise, it just seems like magic.

Recall: Building a capacitor

Conducts electricity well. (metal, doped polysilicon)

An insulator. Does not conducts electricity at all. (air, glass (silicon dioxide))

Conducts electricity well (metal, doped polysilicon)

Recall: Capacitors in action

Because the dielectric is an insulator, and does not conduct.

After circuit "settles" ...

Q = C V = C * 1.5 Volts (D cell)

Q: Charge stored on capacitor

C: The capacitance of the device: function of device shape and type of dielectric.

Storing computational state as charge

State is coded as the amount of energy stored by a device.

+++ +++ ---- ----

State is read by sensing the amount of energy

Problems: noise changes Q (up or down), parasitics leak or source Q. Fortunately, Q cannot change instantaneously, but that only CS 150 L12: DRAM gets us in the ballpark.

MOS Transistors

Two diodes and a capacitor in an interesting arrangement. So, we begin with a diode review ...

Diodes in action ...

CS 150 L12: DRAM

Diodes: Current vs Voltage

How to make a silicon diode ...

Note: IC Diodes are biased "off"!

V1, V2 > 0V. Piodes "off", only current is lo "leakage". I = Io [exp(V/Vo) - 1]Anodes of all diodes on wafer connected to ground.

MOS Transistors

Two diodes and a capacitor in an interesting arrangement ...

What we want: the perfect switch.

CS 150 L12: DRAM

We want to turn a p-type region into an n-type region under voltage control.

We need electrons to fill valence holes and add conduction band electrons

An n-channel MOS transistor (nFET)

Vg = 1V, small region near the surface turns from p-type to n-type.

nFet is on

Mask set for an n-Fet (circa 1986)

Masks #1: n+ diffusion #2: poly (gate) #3: diff contact #4: metal

Layers to do p-Fet not shown. Modern processes have 6 to 10 metal layers (or more) (in 1986: 2).

Dynamic Memory Cells

Recall: Capacitors in action

Because the dielectric is an insulator, and does not conduct.

After circuit "settles" ...

Q = C V = C * 1.5 Volts (D cell)

Q: Charge stored on capacitor

C: The capacitance of the device: function of device shape and type of dielectric.

DRAM cell: 1 transistor, 1 capacitor

A 4 x 4 DRAM array (16 bits)

CS 150 L12: DRAM

Invented after SRAM, by Robert Dennard

United States Patent Office

3,387,286 Patented June 4, 1968

2

tinent in disclosing various concepts and structures which have been developed in the application of field-effect transistors to different types of memory applications, the primary thrust up to this time in conventional read-write random access memories has been to connect a plurality of field-effect transistors in each cell in a latch configuration. Memories of this type require a large number of active devices in each cell and therefore each cell re-

CS 150 L12: DRAM

DRAM Circuit Challenge #1: Writing

Vgs = Vdd - Vc. When Vdd - Vc == Vth, charging effectively stops!

DRAM Challenge #2: Destructive Reads

DRAM Circuit Challenge #3a: Sensing

CS 150 L12: DRAM

Assume Ccell = 1 fFBit line may have 2000 nFet drains, assume bit line C of 100 fF or 100*Ccell. Ccell holds Q = Ccell*(Vdd-Vth) 100*Ccell Ccell When we dump this charge onto the bit line, what voltage do we see? dV = [Ccell*(Vdd-Vth)] / [100*Ccell]dV = (Vdd-Vth) / 100 = tens of millivolts! In practice, scale array to get a 60mV signal.

DRAM Circuit Challenge #3b: Sensing

CS 150 L12: DRAM

DRAM Challenge #4: Leakage ...

CS 150 L12: DRAM

DRAM Challenge #5: Cosmic Rays ...

CS 150 L12: DRAM

DRAM Challenge 6: Yield

Solution: add extra bit lines (i.e. 80 when you only need 64). During testing, find the bad bit lines, and use high current to burn away "fuses" put on chip to remove them.

CS 150 L12: DRAM

Extra bit lines.

Moore's Law for CPUs and DRAMs

From: "Facing the Hot Chips Challenge Again", Bill Holt, Intel, presented at Hot Chips 17, 2005.

CS 150 L12: DRAM

Main driver: device scaling ...

From: "Facing the Hot Chips Challenge Again", Bill Holt, Intel, presented at Hot Chips 17, 2005.

CS 150 L12: DRAM

Process Scaling: Why chips don't fry

IC process scaling ("Moore's Law")

Pue to reducing V and C (length and width of Cs decrease, but plate distance gets smaller).

Recent slope more shallow because V is being scaled less aggressively.

From: "Facing the Hot Chips Challenge Again", Bill Holt, Intel, presented at Hot Chips 17, 2005. CS 150 L12: DRAM

DRAM Challenge 7: Scaling

Each generation of IC technology, we shrink width and length of cell. If Ccell and drain canacitances scale t

If Ccell and drain capacitances scale together, number of bits per bit line stays constant.

dV = 60 mV= [Ccell*(Vdd-Vth)] / [100*Ccell]

Problem 1: Number of arrays per chip grows!
Problem 2: Vdd may need to scale down too!

Solution: Constant Innovation of Cell Capacitors! UC Regents S

Poly-diffusion Ccell is ancient history

Early replacement: "Trench" capacitors

SEM photomicrograph of 0.25- μ m trench DRAM cell suitable for scaling to 0.15 μ m and below. Reprinted with permission from [17]; © 1995 IEEE.

Final generation of trench capacitors

The companies that kept scaling trench capacitors for commodity **DRAM** chips went out of business.

Modern cells: "stacked" capacitors

CS 150 L12: DRAM CS

In the labs: Vertical cell transistors ...

880

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 4, APRIL 2010

A 31 ns Random Cycle VCAT-Based $4F^2$ DRAM With Manufacturability and Enhanced Cell Efficiency

Ki-Whan Song, Jin-Young Kim, Jae-Man Yoon, Sua Kim, Huijung Kim, Hyun-Woo Chung, Hyungi Kim, Kanguk Kim, Hwan-Wook Park, Hyun Chul Kang, Nam-Kyun Tak, Dukha Park, Woo-Seop Kim, *Member, IEEE*, Yeong-Taek Lee, Yong Chul Oh, Gyo-Young Jin, Jeihwan Yoo, Donggun Park, *Senior Member, IEEE*, Kyungseok Oh, Changhyun Kim, *Senior Member, IEEE*, and Young-Hyun Jun

CS 150 L12: DRAM

Micron 50nm 1-Gbit DDR2 die photo

CS 150 L12: DRAM

UC Regents Spring 2012 © UCB

Today's Lecture: DRAM

H DRAM, Xilinx, and You

H DRAM: Bottom-up

H DRAM: Top-down

512Mb: x4, x8, x16 DDR2 SDRAM Features

A "bank" of 128 Mb (512Mb chip -> 4 banks)

Recall DRAM Challenge #3b: Sensing

CS 150 L12: DRAM

"Sensing" is row read into sense amps

CS 150 L12: DRAM

An ill-timed refresh may add to latency

CS 150 L12: DRAM

Latency is not the same as bandwidth!

Sadly, it's rarely this good ...

DRAM latency/bandwidth chip features

Columns: Design the right interface for CPUs to request the subset of a column of data it wishes:

16384 bits delivered by sense amps

Select requested bits, send off the chip

Interleaving: Design the right interface
 to the 4 memory banks on the chip, so
 several row requests run in parallel.

Off-chip interface for the Micron part ...

A clocked bus: 200 MHz clock, data transfers on both edges (DDR). Note! This example is **best-case!** To access a new row, a slow ACTIVE command must run before the REAP.

DRAM is controlled via commands (READ, WRITE, REFRESH, ...)

Synchronous data output.

Auto-Precharge **Opening a row before reading** READ

However, we can read columns quickly

Note: This is a "normal read" (not Auto-Precharge). Both READs are to the same bank, but different columns.

Why can we read columns quickly?

Interleave: Access all 4 banks in parallel

Interleaving: Design the right interface to the 4 memory banks on the chip, so several row requests run in parallel.

Bank b

Can also do other commands on banks concurrently.

Bank c

Bank a

UC Regents Spring 2012 © UCB

Bank d

Only part of a bigger story ...

Only part of a bigger story ...

DRAM controllers: reorder requests

(A) Without access scheduling (56 DRAM Cycles)

(B) With access scheduling (19 DRAM Cycles)

DRAM Operations:

P: bank precharge (3 cycle occupancy)

A: row activation (3 cycle occupancy)

C: column access (1 cycle occupancy)

From: Memory Access Scheduling

CS 150 L12: DRAM Scott Rixner¹, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D. Owens UC Regents Spring 2012 © UCB

Present and Future ...

MacBook Air ... too thin to use DIMMs

Mainboard: fills about 25% of the laptop

35 W-h battery: 63% of 2006 MacBook's 55 W-h

Core i5: CPU + DRAM controller

Main board

intel

4GB DRAM soldered to the main board

3-D memory stack

DRAM die size	10.7 mm × 13.3 mm
DRAM die thickness	50 µm
TSV count in DRAM	1,560
DRAM capacity	512 Mbit/die \times 2 strata
CMOS logic die size	17.5 mm × 17.5 mm
CMOS logic die thickness	200 µm
CMOS logic bump count	3,497
CMOS logic process	0.18 µm CMOS
DRAM-logic FTI via pitch	50 µm
Package size	33 mm × 33 mm
BGA terminal	520 pin / 1mm pitch

A 3D Stacked Memory Integrated on a Logic Device Using SMAFTI Technology

Yoichiro Kurita¹, Satoshi Matsui¹, Nobuaki Takahashi¹, Koji Soejima¹, Masahiro Komuro¹, Makoto Itou¹, Chika Kakegawa¹, Masaya Kawano¹, Yoshimi Egawa², Yoshihiro Saeki², Hidekazu Kikuchi², Osamu Kato², Azusa Yanagisawa², Toshiro Mitsuhashi², Masakazu Ishino³, Kayoko Shibata³, Shiro Uchiyama³, Junji Yamada³, and Hiroaki Ikeda³ ¹NEC Electronics, ²Oki Electric Industry, and ³Elpida Memory 1120 Shimokuzawa, Sagamihara, Kanagawa 229-1198, Japan y.kurita@necel.com

Next week's lectures: Timing ...

