
Spring 2012 EECS150 - Lec15-video Page

EECS150 - Digital Design
Lecture 15 - Video

March 6, 2011
John Wawrzynek

1

Spring 2012 EECS150 - Lec15-video Page

MIPS150 Video Subsystem

2

• Gives software ability to display information on screen.
• Equivalent to standard graphics cards:

• Processor can directly write the display bit map
• 2D Graphics acceleration

Spring 2012 EECS150 - Lec15-video Page

“Framebuffer” HW/SW Interface
• A range of memory addresses correspond to the display.
• CPU writes (using sw instruction) pixel values to change display.
• No synchronization required. Independent process reads pixels from

memory and sends them to the display interface at the required rate.

0

0xFFFFFFFF
CPU address map

3

Ex: 1024 pixels/line X 768 lines

0x80000000

0x803FFFFC Frame
buffer Display Origin:

Increasing X
values to the
right. Increasing
Y values down.

(0,0)

(1023, 767)

Spring 2012 EECS150 - Lec15-video Page

Framebuffer Implementation
• Framebuffer like a simple dual-ported memory.

Two independent processes access framebuffer:

4

CPU writes pixel
locations. Could be

in random order, e.g.
drawing an object,

or sequentially, e.g.
clearing the screen.

Video Interface
continuously reads
pixel locations in
scan-line order and
sends to physical
display.

• How big is this memory and how do we implement
it? For us:
 1024 x 768 pixels/frame x 24 bits/pixel

Frame
buffer

Spring 2012 EECS150 - Lec15-video Page

Memory Mapped Framebuffer

0

0xFFFFFFFF
MIPS address map

5

1024 pixels/line X 768 lines

0x80000000

0x8023FFFD Frame
buffer

Display Origin:
Increasing X
values to the
right. Increasing
Y values down.

(0,0)

(1023, 767)

1024 * 768 = 786,432 pixels

We choose 24 bits/pixel
{ Red[7:0] ; Green[7:0] ; Blue[7:0] }

786,432 * 3 = 2,359,296 Bytes

• Total memory bandwidth needed to support frame
buffer?

Spring 2012 EECS150 - Lec15-video Page

Frame Buffer Implementation

• Which XUP memory resource to use?
• Memory Capacity Summary:

• LUT RAM
• Block RAM
• External SRAM
• External DRAM

• DRAM bandwidth:

6

Spring 2012 EECS150 - Lec15-video Page

Framebuffer Details

7

XUP DRAM
memory capacity:
256 MBytes (in
external DRAM).

0

0xFFFFFFFF
MIPS address map

768 lines, 1024 pixels/line

0x80000000

0x80240000
Frame
buffer

4K
4K
4K

4K
...

= 786,432 pixel locations

Starting each line on a multiple of 4K leads to
independent X and Y address: {Y[9:0] ; X[11:2]}
Y == row number, X == pixel in row

1024 x 768
locations

With Byte
addressed memory,
best to use 4 Bytes/
pixel

Spring 2012 EECS150 - Lec15-video Page

Frame Buffer Physical Interface

8

More generally, how does software
interface to I/O devices?

CPU

Video
Interface

 DRAM Controller / Hub

FPGA

You do!

We do!

Processor Side: provides a
memory mapped programming
interface to video display.

Video Interface Block:
accepts pixel values from
FB, streams pixels values
and control signals to
physical device.

DRAM “Hub”:
arbitrates among
multiple DRAM users.

You do!

Spring 2012 EECS150 - Lec15-video Page

Physical Video Interface

9

DVI connector:
accommodates
analog and
digital formats

DVI Transmitter Chip, Chrontel 7301C.

Implements standard
signaling voltage levels
for video monitors.
Digital to analog
conversion for analog
display formats.

Spring 2012 EECS150 - Lec15-video Page

Framebuffer Details 2009
• One pixel value per memory location.

10

Virtex-5 LX110T
memory capacity:
5,328 Kbits (in block
RAMs).

0

0xFFFFFFFF
MIPS address map 768 lines, 1K pixels/line

0x80000000

0x803FFFFC Frame
buffer

1K
1K
1K

1K
...

• Note, that with only 4 bits/pixel, we could assign more than one pixel
per memory location. Ruled out by us, as it complicated software.

= 786,432
memory
locations

(5,328 X 1024 bits) / 786432 =
6.9 bits/pixel max!

We choose 4 bits/pixel

Spring 2012 EECS150 - Lec15-video Page

Color Map

11

4 bits per pixel, allows software to assign each screen location, one of
16 different colors.

However, physical display interface uses 8 bits / pixel-color.
Therefore entire pallet is 224 colors.

Color map is memory mapped to CPU address space, so software can
set the color table. Addresses: 0x8040_0000 0x8040_003C, one
24-bit entry per memory address.

R G B
R G B
R G B

R G B
...

24 bits

16 entries

pixel value from
framebuffer

pixel color
to video
interface

Color Map converts 4 bit pixel values to 24 bit colors.

Spring 2012 EECS150 - Lec15-video Page

Memory Mapped Framebuffer 2010
• A range of memory addresses correspond to the display.
• CPU writes (using sw instruction) pixel values to change display.
• No handshaking required. Independent process reads pixels from

memory and sends them to the display interface at the required rate.

0

0xFFFFFFFF
MIPS address map

12

800 pixels/line X 600 lines

0x80000000

0x801D4BFC Frame
buffer

Display Origin:
Increasing X
values to the
right. Increasing
Y values down.

(0,0)

(800, 600)

8Mbits / 480000 = 17.5 bits/pixel max!

We choose 16 bits/pixel
{ Red[4:0] ; Green[5:0] ; Blue[4:0] }

Spring 2012 EECS150 - Lec15-video Page

Framebuffer Details 2010

13

XUP SRAM
memory capacity:
~8 Mbits (in external
SRAMs).

0

0xFFFFFFFF
MIPS address map 600 lines, 800 pixels/line

0x80000000

0x803FFFFC Frame
buffer

1K
1K
1K

1K
...

• Note, that we assign only one 16 bit pixel per memory location.
• Two pixel address map to one address in the SRAM (it is 32bits wide).
• Only part of the mapped memory range occupied with physical memory.

= 480,000
memory
locations

Starting each line on a multiple of 1K
leads to independent X and Y address:
{Y[9:0] ; X[9:0]}
Y == row number, X == pixel in row

1024 x 768
locations

Spring 2012 EECS150 - Lec15-video Page

XUP Board External SRAM

14

More generally, how does software
interface to I/O devices?

*ZBT (ZBT stands for zero bus
turnaround) — the turnaround is
the number of clock cycles it
takes to change access to the
SRAM from write to read and
vice versa. The turnaround for
ZBT SRAMs or the latency
between read and write cycle is
zero.

“ZBT” synchronous
SRAM, 9 Mb on
32-bit data bus,
with four “parity”
bits
256K x 36 bits
(located under the
removable LCD)

Spring 2012 EECS150 - Lec15-video Page

MIPS150 Video Subsystem

15

• Gives software ability to display information on screen.
• Equivalent to standard graphics cards:

• Processor can directly write the display bit map
• 2D Graphics acceleration

Spring 2012 EECS150 - Lec15-video Page

Graphics Software

16

clear: # a0 holds 4-bit pixel color
 # t0 holds the pixel pointer
 ori $t0, $0, 0x8000 # top half of frame address
 sll $t0, $t0, 16 # form framebuffer beginning address
 # t2 holds the framebuffer max address
 ori $t2, $0, 768 # 768 rows
 sll $t2, $t2, 12 # * 1K pixels/row * 4 Bytes/address
 addu $t2, $t2, $t0 # form ending address
 addiu $t2, $t2, -4 # minus one word address
! #
 # the write loop
L0: sw $a0, 0($t0) # write the pixel
 bneq $t0, $t2, L0 # loop until done
 addiu $t0, $t0, 4 # bump pointer
! jr $ra

“Clearing” the screen - fill the entire screen with same color
Remember Framebuffer base address: 0x8000_0000
Size: 1024 x 768

How long does this take? What do we need to know to answer?
How does this compare to the frame rate?

Spring 2012 EECS150 - Lec15-video Page

Optimized Clear Routine

17

clear:
.
.
.

 # the write loop
L0: sw $a0, 0($t0) # write some pixels
 sw $a0, 4($t0)
 sw $a0, 8($t0)
 sw $a0, 12($t0)
 sw $a0, 16($t0)
 sw $a0, 20($t0)
 sw $a0, 24($t0)
 sw $a0, 28($t0)
 sw $a0, 32($t0)
 sw $a0, 36($t0)
 sw $a0, 40($t0)
 sw $a0, 44($t0)
 sw $a0, 48($t0)
 sw $a0, 52($t0)
 sw $a0, 56($t0)
 sw $a0, 60($t0)
 bneq $t0, $t2, L0 # loop until done
 addiu $t0, $t0, 64 # bump pointer
 jr $ra

What’s the performance of this one?

Amortizing the loop overhead.

Spring 2012 EECS150 - Lec15-video Page

Line Drawing

18

0

0 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7

(x0,y0) (x1,y1)From to
Line equation defines
all the points:

For each x value, could compute y, with:
then round to the nearest integer y value.

Slope can be precomputed, but still requires floating
point * and + in the loop: slow or expensive!

Spring 2012 EECS150 - Lec15-video Page

Bresenham Line Drawing Algorithm

• Computers of the day, slow at
complex arithmetic operations,
such as multiply, especially on
floating point numbers.

• Bresenham’s algorithm works
with integers and without
multiply or divide.

• Simplicity makes it appropriate
for inexpensive hardware
implementation.

• With extension, can be used
for drawing circles.

19

Developed by Jack E. Bresenham in 1962 at IBM.
"I was working in the computation lab at IBM's San Jose
development lab. A Calcomp plotter had been attached to
an IBM 1401 via the 1407 typewriter console. ...

Spring 2012 EECS150 - Lec15-video Page

Line Drawing Algorithm

20

This version assumes: x0 < x1, y0 < y1, slope =< 45 degrees
function line(x0, x1, y0, y1)
 int deltax := x1 - x0
 int deltay := y1 - y0
 int error := deltax / 2
 int y := y0
 for x from x0 to x1
 plot(x,y)
 error := error - deltay
 if error < 0 then
 y := y + 1
 error := error + deltax

Note: error starts at deltax/2 and gets decremented
by deltay for each x, y gets incremented when error
goes negative, therefore y gets incremented at a rate
proportional to deltax/deltay.

0 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7

Spring 2012 EECS150 - Lec15-video Page

Line Drawing, Examples

21

0 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7

deltay = 1 (very low slope).
y only gets incremented
once (halfway between x0
and x1)

0 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7

deltay = deltax (45 degrees,
max slope). y gets
incremented for every x

Spring 2012 EECS150 - Lec15-video Page

Line Drawing Example

22

0 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7

function line(x0, x1, y0, y1)
 int deltax := x1 - x0
 int deltay := y1 - y0
 int error := deltax / 2
 int y := y0
 for x from x0 to x1
 plot(x,y)
 error := error - deltay
 if error < 0 then
 y := y + 1
 error := error + deltax

deltax = 10, deltay = 4, error = 10/2 = 5, y = 1

(1,1) -> (11,5)

x = 1: plot(1,1)
error = 5 - 4 = 1

x = 2: plot(2,1)
error = 1 - 4 = -3
 y = 1 + 1 = 2
 error = -3 + 10 = 7

x = 3: plot(3,2)
error = 7 - 4 = 3

x = 4: plot(4,2)
error = 3 - 4 = -1
 y = 2 + 1 = 3
 error = -1 + 10 = 9

x = 5: plot(5,3)
error = 9 - 4 = 5

x = 6: plot(6,3)
error = 5 - 4 = 1

x = 7: plot(7,3)
error = 1 - 4 = -3
 y = 3 + 1 = 4
 error = -3 + 10 -= 7

Spring 2012 EECS150 - Lec15-video Page

C Version

23

#define SWAP(x, y) (x ^= y ^= x ^= y)
#define ABS(x) (((x)<0) ? -(x) : (x))

void line(int x0, int y0, int x1, int y1) {
 char steep = (ABS(y1 - y0) > ABS(x1 - x0)) ? 1 : 0;
 if (steep) {
 SWAP(x0, y0);
 SWAP(x1, y1);
 }
 if (x0 > x1) {
 SWAP(x0, x1);
 SWAP(y0, y1);
 }
 int deltax = x1 - x0;
 int deltay = ABS(y1 - y0);
 int error = deltax / 2;
 int ystep;
 int y = y0
 int x;
 ystep = (y0 < y1) ? 1 : -1;
 for (x = x0; x <= x1; x++) {
 if (steep)
 plot(y,x);
 else
 plot(x,y);
 error = error - deltay;
 if (error < 0) {
 y += ystep;
 error += deltax;
 }
 }
}

Modified to work in any
quadrant and for any slope.

Estimate software
performance (MIPS version)

What’s needed to do it in
hardware?

Goal is one pixel per cycle.
Pipelining might be necessary.

Spring 2012 EECS150 - Lec15-video Page

Hardware Implementation Notes

24

x0

y1
x1

0

32

0x8040_0040:
0x8040_0044:

0x8040_0064:Read-only control register ready
0x8040_0060: color

y0

10

x0

x1

y0

0x8040_0048:
0x8040_004c:
0x8040_0050:
0x8040_0054:
0x8040_0058:
0x8040_005c:

Write-only trigger
registers

Write-only non-trigger
registers

• CPU initializes line engine by sending pair of points and color
value to use. Writes to 0x8040_005* trigger engine.

• Framebuffer has one write port - Shared by CPU and line engine.
Priority to CPU - Line engine stalls when CPU writes.

y1

