EECS150 - Digital Design Lecture 18-Counters

March 14, 2012
John Wawrzynek

Counters

- Special sequential circuits (FSMs) that repeatedly sequence through a set of outputs.
- Examples:
- binary counter: 000, 001, 010, 011, 100, 101, 110, 111, 000,
- gray code counter: 000, 010, 110, 100, 101, 111, 011, 001, 000, 010, 110, ...
- one-hot counter: 0001, 0010, 0100, 1000, 0001, 0010, ...
- BCD counter: 0000, 0001, 0010, ..., 1001, 0000, 0001
- pseudo-random sequence generators: $10,01,00,11,10$, 01, 00, ...
- Moore machines with "ring" structure in State Transition Diagram:

What are they used?

- Counters are commonly used in hardware designs because most (if not all) computations that we put into hardware include iteration (looping). Examples:
- Shift-and-add multiplication scheme.
- Bit serial communication circuits (must count one "words worth" of serial bits.
- Other uses for counter:
- Clock divider circuits

- Systematic inspection of data-structures
- Example: Network packet parser/filter control.
- Counters simplify "controller" design by:
- providing a specific number of cycles of action,
- sometimes used with a decoder to generate a sequence of timed control signals.
- Consider using a counter when many FSM states with few branches.

Controller using Counters

- Example, Bit-serial multiplier (n^{2} cycles, one bit of result per n cycles):

- Control Algorithm:

```
repeat n cycles { // outer (i) loop
        repeat n cycles{ // inner (j) loop
            shiftA, selectSum, shiftHI
        }
        shiftB, shiftHI, shiftLOW, reset
    }
```

Note: The occurrence of a control signal x means $x=1$. The absence of x means $x=0$.

Controller using Counters

- State Transition Diagram:
- Assume presence of two binary counters. An "i" counter for the outer loop and

Controller using Counters

- Controller circuit implementation:
- Outputs:

$$
\begin{aligned}
& \mathrm{CE}_{\mathrm{i}}=\mathrm{q}_{2} \\
& \mathrm{CE}_{\mathrm{j}}=\mathrm{q}_{1} \\
& \mathrm{RST}_{\mathrm{i}}=\mathrm{q}_{0} \\
& \mathrm{RST}_{\mathrm{j}}=\mathrm{q}_{2}
\end{aligned}
$$

$$
\text { shiftA }=q_{1}
$$

$$
\text { shiftB }=q_{2}
$$

$$
\text { shiftLOW = } q_{2}
$$

$$
\text { shiftHI }=q_{1}+q_{2}
$$

$$
\text { reset }=q_{2}
$$

$$
\text { selectSUM }=q_{1}
$$

How do we design counters?

- For binary counters (most common case) incrementer circuit would work:

- In Verilog, a counter is specified as: $x=x+1$;
- This does not imply an adder
- An incrementer is simpler than an adder
- And a counter might be simpler yet.
- In general, the best way to understand counter design is to think of them as FSMs, and follow general procedure, however some special cases can be optimized.

Synchronous Counters

All outputs change with clock edge.

- Binary Counter Design: Start with 3-bit version and generalize:

c b a	$\mathrm{c}^{+} \mathrm{b}^{+} \mathrm{a}^{+}$	
000	001	$\mathrm{a}^{+}=\mathrm{a}^{\prime}$
001	010	$\mathrm{b}^{+}=\mathrm{a} \oplus \mathrm{b}$
010	011	
011	100	
100	101	$c^{+}=a b c c^{\prime}+a^{\prime} b^{\prime} c+a b^{\prime} c+a{ }^{\prime} b c$
101	110	$=a^{\prime} c+a b c^{\prime}+b^{\prime} c$
110	111	$=c\left(a^{\prime}+b^{\prime}\right)+c^{\prime}(a b)$
111	000	$\begin{aligned} & =c(a b)^{\prime}+c^{\prime}(a b) \\ & =c \oplus a b \end{aligned}$

Synchronous Counters

- How do we extend to n-bits?
- Extrapolate $c^{+}: d^{+}=d \oplus a b c, e^{+}=e \oplus a b c d$

- Has difficulty scaling (AND gate inputs grow with n)

- CE is "count enable", allows external control of counting,
- TC is "terminal count", is asserted on highest value, allows cascading, external sensing of occurrence of max value.

Synchronous Counters

- How does this one scale?
: Delay grows $\alpha \mathrm{n}$
- Generation of TC signals very similar to generation of carry signals in adder.
- "Parallel Prefix" circuit reduces delay:

Up-Down Counter

Page 11

Odd Counts

- Extra combinational logic can be added to terminate count before max value is reached:
- Example: count to 12

- Alternative:

Ring Counters

- "one-hot" counters
- What are these good for?

0001, 0010, 0100, 1000, 0001, ...

"Self-starting" version:

Johnson Counter

(a) Four-stage switch-tail ring counter

Sequence number	Flip-flop outputs				AND gate required for output
	A	B	C	E	$A^{\prime} E^{\prime}$
1	0	0	0	0	$A B^{\prime}$
2	1	0	0	0	$B C^{\prime}$
3	1	1	0	0	$C E^{\prime}$
4	1	1	1	0	$A E$
5	1	1	1	1	$A^{\prime} B$
6	0	1	1	1	$B^{\prime} C$
7	0	0	1	1	$C^{\prime} E$
	0	0	0	1	

(b) Count sequence and required decoding

Fig. 6-18 Construction of a Johnson Counter

Asynchronous "Ripple" counters

Fig. 6-8 4-Bit Binary Ripple Counter

