EECS150 - Digital Design Lecture 19 - Arithmetic Blocks, Part 1

March 20, 2012
John Wawrzynek

Carry-ripple Adder Revisited

- Each cell:

$$
\begin{aligned}
& r_{i}=a_{i} \text { XOR } b_{i} \text { XOR } c_{i n} \\
& c_{\text {out }}=a_{i} c_{\text {in }}+a_{i} b_{i}+b_{i} c_{i n}=c_{i n}\left(a_{i}+b_{i}\right)+a_{i} b_{i}
\end{aligned}
$$

- 4-bit adder:
"Full adder cell"

- What about subtraction?

Subtractor

$$
A-B=A+(-B)
$$

How do we form -B?

1. complement B
2. add 1

Delay in Ripple Adders

- Ripple delay amount is a function of the data inputs:

- However, we usually only consider the worst case delay on the critical path. There is usually at least one set of input data that exposes the worst case delay.

Adders (cont.)

Ripple Adder

Ripple adder is inherently slow because, in general s7 must wait for c7 which must wait for c6 ...

$$
T \propto n, \text { Cost } \alpha n
$$

How do we make it faster, perhaps with more cost?

Carry Select Adder

Carry Select Adder

- Extending Carry-select to multiple blocks

- What is the optimal \# of blocks and \# of bits/block?
- If blocks too small delay dominated by total mux delay
- If blocks too large delay dominated by adder delay
$\sqrt{\mathrm{N}}$ stages of $\sqrt{\mathrm{N}}$ bits

Carry Select Adder

- Compare to ripple adder delay:

$$
\mathrm{T}_{\text {total }}=2 \operatorname{sqrt}(\mathrm{~N}) \mathrm{T}_{\mathrm{FA}}-\mathrm{T}_{\mathrm{FA}} \text {, assuming } \mathrm{T}_{\mathrm{FA}}=\mathrm{T}_{\mathrm{MUX}}
$$

For ripple adder $\mathrm{T}_{\text {total }}=\mathrm{N} \mathrm{T}_{\text {FA }}$ "cross-over" at $\mathrm{N}=3$, Carry select faster for any value of $\mathrm{N}>3$.

- Is sqrt(N) really the optimum?
- From right to left increase size of each block to better match delays
- Ex: 64-bit adder, use block sizes [12 1110987 7]
- How about recursively defined carry select?

Carry Look-ahead Adders

- In general, for n -bit addition best we can achieve is delay $\alpha \log (\mathrm{n})$
- How do we arrange this? (think trees)
- First, reformulate basic adder stage:

$$
\begin{aligned}
& c_{i+1}=g_{i}+p_{i} c_{i} \\
& s_{i}=p_{i} \oplus c_{i}
\end{aligned}
$$

Carry Look-ahead Adders

- Ripple adder using p and g signals:

$p_{i}=a_{i} \oplus b_{i}$ $g_{i}=a_{i} b_{i}$
- So far, no advantage over ripple adder: T $\alpha \mathrm{N}$

Carry Look-ahead Adders

- Expand carries:
c_{0}
$c_{1}=g_{0}+p_{0} c_{0}$
$c_{2}=g_{1}+p_{1} c_{1}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}$
$c_{3}=g_{2}+p_{2} c_{2}=g_{2}+p_{2} g_{1}+p_{1} p_{2} g_{0}+p_{2} p_{1} p_{0} c_{0}$
$c_{4}=g_{3}+p_{3} c_{3}=g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+\ldots$
- Why not implement these equations directly to avoid ripple delay?
- Lots of gates. Redundancies (full tree for each).
- Gate with high \# of inputs.
- Let's reorganize the equations.

Carry Look-ahead Adders

- "Group" propagate and generate signals:
$\longrightarrow \mathrm{p}_{\mathrm{i}}$

$$
\begin{aligned}
& P=p_{i} p_{i+1} \ldots p_{i+k} \\
& G=g_{i+k}+p_{i+k} g_{i+k-1}+\ldots+\left(p_{i+1} p_{i+2} \ldots p_{i+k}\right) g_{i}
\end{aligned}
$$

- P true if the group as a whole propagates a carry to $c_{\text {out }}$
- G true if the group as a whole generates a carry

$$
\mathrm{c}_{\text {out }}=\mathrm{G}+\mathrm{Pc}_{\text {in }}
$$

- Group P and G can be generated hierarchically.

8-bit Carry Lookahead Adder

$$
\begin{aligned}
& P=P_{a} P_{b} \\
& G=G_{b}+G_{a} P_{b} \\
& C_{\text {out }}=G+c_{\text {in }} P
\end{aligned}
$$

Carry look-ahead Wrap-up

- Adder delay $\mathrm{O}(\log \mathrm{N})$ (up then down the tree).
- Cost? Energy per add?
- Can be applied with other techniques. Group P \& G signals can be generated for sub-adders, but another carry propagation technique (for instance ripple) used within the group.
- For instance on FPGA. Ripple carry up to 32 bits is fast (1.25ns), CLA used to extend to large adders. CLA tree quickly generates carry-in for upper blocks.
- Other more complex techniques exist that can bring the delay down below $O(\log N)$, but are only efficient for very wide adders.

Bit-serial Adder

n-bit shift registers

- A, B, and R held in shift-registers. Shift right once per clock cycle.
- Reset is asserted by controller.
- Addition of 2 n-bit numbers:
- takes n clock cycles,
- uses 1 FF, 1 FA cell, plus registers
- the bit streams may come from or go to other circuits, therefore the registers might not be needed.

Adders on the Xilinx Virtex-5

- Dedicated carry logic provides fast arithmetic carry capability for highspeed arithmetic functions.
- Cin to Cout (per bit) delay $=40 \mathrm{ps}$, versus 900ns for F to X delay.
- 64-bit add delay $=$ 2.5ns.

Virtex 5 Vertical Logic

We can map ripple-carry addition onto carry-chain block.

The carry-chain block also useful for speeding up other adder structures and counters.

Adder Final Words

Type	Cost	Delay
Ripple	$\mathrm{O}[\mathrm{N}]$	$\mathrm{O}[\mathrm{N}]$
Carry-select	$\mathrm{O}[\mathrm{N}]$	$\mathrm{O}[$ sqrt $[\mathrm{N}]]$
Carry-lookahead	$\mathrm{O}[\mathrm{N}]$	$\mathrm{O}[\mathrm{log}[\mathrm{N}]]$

- Dynamic energy per addition for all of these is $O[n]$.
- " 0 " notation hides the constants. Watch out for this!
- The cost of the carry-select is at least $2 X$ the cost of the ripple. Cost of the CLA is probably at least $2 X$ the cost of the carry-select.
- The actual multiplicative constants depend on the implementation details and technology.
- FPGA and ASIC synthesis tools will try to choose the best adder architecture automatically
- assuming you specify addition using the "+" operator, as in

$$
\text { "assign } A=B+C "
$$

