EECS150 - Digital Design

Lecture 20 - Arithmetic Blocks,

Part 2 + Shifters

March 22, 2012
John Wawrzynek

Spring 2012 EECS150 - Lec20-arith2

Multiplication

a, a, a, a, — Multiplicand

X ab, ab, a;b, ayby"
asb, a)b, a;b, ayb, . Partial
as;b, a,b, a;b, a,b, products
asb, a,b; a,b; agb;

~/

a,b,tagb, ajb, — Product

Many different circuits exist for multiplication.
Each one has a different balance between
speed (performance) and amount of logic (cost).

Spring 2012 EECS150 - Lec20-arith2 Page 2

“Shift and Add” Multiplier

« Sums each partial

product, one at a time.
P K B * In binary, each partial

ot shift redict product is shifted
PO ST IGISErS versions of A or 0.
k

+ —
n-bit 0 0 Control Algorithm:
adder 1|:j: 1. P < 0, A — multiplicand,

A B < muiltiplier

r+bit register 2. If LSB of B==1 then add Ato P

else add O
3. Shift [P][B] right 1
4. Repeat steps 2 and 3 n-1 times.
5. [P][B] has product.

Spring 2012 EECS150 - Lec20-arith2 Page 3

“Shift and Add” Multiplier
Signed Multiplication:

Remember for 2’s complement numbers MSB has negative weight:

N-2
: 1
X = Exl.2’ -x,_,2"
i=0

ex: -6 = 11010, = 0+20 + 1+21 + 0422 + 123 - 12
=0 +2+0+8 -16=-6

» Therefore for multiplication:
a) subtract final partial product
b) sign-extend partial products
» Modifications to shift & add circuit:
a) adder/subtractor

b) sign-extender on P shifter register
Spring 2012 EECS150 - Lec20-arith2 Page 4

 Bit-serial multiplier (n? cycles, one bit of result per n cycles):

S

hiftA—

' ot

A register

Bit-serial Multiplier

shiftB —

' ot

B register

L,

« Control Algorithm:

repeat n cycles {
repeat n cycles{
shiftA, selectSum, shiftHI

}

shiftB, shiftHI, shiftLOW, reset

Spring 2012

— shiftLOW

carry [V
~ FA w| D-FF|
| — shiftHI
reset | .|, ,
sum i e HI register
L_selectsum
// outer (i) loop

// inner (j) loop

LOW register

Note: The occurrence of a control
signal x means x=1. The absence

of x means x=0.

EECS150 - Lec20-arith2

Page 5

Array Multiplier

Single cycle multiply: Generates all n partial products simultaneously.

b3 0 b2 0 b1 O bO O

S Y S N S A

_— Each row: n-bit adder with AND gates

a0
0 _
- T — — - no bj sum in
] } 4 {
——a) a
'—O q | |
\—\ \—\ \—\ \—\ > P1 T;
! ; 3 } —
- * FA
— carry carry
\—\ \—\ \—\ \—\ > P2 OUt< in
1 1 1 1
—— a3 \4
sum out
0
]
i ~e = P4 What is the critical path?

Spring 2012 EECS150 - Lec20-arith2 Page 6

Carry-Save Addition

« Speeding up multiplication is a Example: sum three numbers,
matter of speeding up the 310 = 0011, 2,, = 0010, 3,, = 0011
summing of the partial products.

« “Carry-save” addition can help. 3,, 0011 .

« Carry-save addition passes + 2,, 0010
(saves) the carries to the output, c 0100 = 4.. ¢ carry-save add
rather than propagating them. (10

s 0001 = 14,)
carry-save add < 3. 0011
10
c 0010 = 24,
carry-propagate add< \' s 0110 = 610
1000 = 8,4,

* In general, carry-save addition takes in 3 numbers and produces 2.
 Whereas, carry-propagate takes 2 and produces 1.

« With this technique, we can avoid carry propagation until final addition
Spring 2012 EECS150 - Lec20-arith2 Page 7

Carry-save Circuits

FA[|FA||FA|| FA|| FA|| FA||FA

C SC SC SC SC SC SC SC

When adding sets of numbers,
carry-save can be used on all
but the final sum.

Standard adder (carry
propagate) is used for final sum.

Carry-save is fast (no carry
propagation) and cheap (same
cost as ripple adder)

e

Spring 2012 EECS150 - Lec20-arith2

Page §

Array Multiplier using Carry-save Addition

b3 0 b0 0
| | | | |
—a0 b. sum in
0 0 :
(C -
0 |
\ 1 —— PO DI <9
al jl
l _O je— \\\L// ’7
0 | |
| i > P1 FA
a2 carry carry
0 n out in
9 | l | > P2 \J
a3 sum out
0
. p3
-1 Fast carry-

-

!

P7
Spring 2012

P6

P5

EECS150 - Lec20-arith2

propagate adder

Page O

Carry-save Addition

CSA is associative and communitive. For example:
(Ko + Xq) +X5) +X;) = ((Xg + Xp) +H(X, + X3))

X, Xg Xg X, Xg X5 X, Xg

frL Loy

A balanced tree can be used to
\jsg/ LCSA/ reduce the logic delay.
- ,

3 S
\(_33A \CSA/ « This structure is the basis of the
Wallace Tree Multiplier.

Partial products are summed
\CSA/ with the CSA tree. Fast CPA

IogS/ZN

] (ex: CLA) is used for final sum.
\CSA/ Multiplier delay a log;,N + log,N
cpA/ log,N

Spring 2012 EECS150 - Lec20-arith2 Page 10

Constant Multiplication

Our discussion so far has assumed both the multiplicand
(A) and the multiplier (B) can vary at runtime.

What if one of the two is a constant?

Y=C*X
“Constant Coefficient” multiplication comes up often in
signal processing and other hardware. EX:

Yi= ayiqt X

where o is an application dependent constant that is
hard-wired into the circuit.

How do we build and array style (combinational) multiplier
that takes advantage of the constancy of one of the

operands?

Spring 2012 EECS150 - Lec20-arith2 Page 11

Multiplication by a Constant

If the constant C in C*X is a power of 2, then the multiplication is simply
a shift of X.

Ex: 4*X

What about division?

What about multiplication by non- powers of 27

Spring 2012 EECS150 - Lec20-arith2 Page 12

Multiplication by a Constant

* In general, a combination of fixed shifts and addition:
— Ex:6*X = 0110 * X = (22 + 21)*X

! Y

<< 2 << 1

— 5

0 X3 X2 X1 XO 0
X3 X2 X1 XO
L
4-bit adder

.

Y5 Yq Y3 Yo Y1 Yo

— Details:

Spring 2012 EECS150 - Lec20-arith2 Page 13

Multiplication by a Constant
Another example: C = 23,, = 010111

" v v J’

<< 4 << 2 << 1

— OO

In general, the number of additions equals the number of
1’s in the constant minus one.

Using carry-save adders (for all but one of these) helps
reduce the delay and cost, but the number of adders is still
the number of 1's in C minus 2.

Is there a way to further reduce the number of adders (and
thus the cost and delay)?

Spring 2012 EECS150 - Lec20-arith2 Page 14

Multiplication using Subtraction

Subtraction is ~ the same cost and delay as addition.
Consider C*X where C is the constant value 15,, = 01111.
C*X requires 3 additions.
We can “recode” 15
from 01111 = (23 + 22+ 21+ 20)
to 10001 = (24 -20)
where 1 means negative weight.
Therefore, 15*X can be implemented with only one
subtractor.

Spring 2012 EECS150 - Lec20-arith2 Page 15

Canonic Signed Digit Representation

CSD represents numbers using 1, 1, & 0 with the least
possible number of non-zero digits.

— Strings of 2 or more non-zero digits are replaced.

— Leads to a unique representation.

To form CSD representation might take 2 passes:

— First pass: replace all occurrences of 2 or more 1's:
01..10 by 10..10
— Second pass: same as a above, plus replace 0110 by 0010

Examples:

29 0010111 = 23 0110110 = 54
32-4+1 001100T 1071070
0107T00T=32-8 -1 100T0T0 =64 -8 - 2

Can we further simplify the multiplier circuits?

011101 =
100701 =

Spring 2012 EECS150 - Lec20-arith2 Page 16

"Constant Coefficient Multiplication™ (KCM)

Binary multiplier: 'Y =231*X = (27 + 26 + 25 + 22 + 21+20)*X
X
Y v v v v
If_il |<<6| |<<+5| |<<2| |<<1|
S .l O
CSD helps, but the multipliers are limited to shifts followed by adds.
— CSD multiplier: Y =231*X = (28 - 25 + 23 - 20)*X
X

v v v
[<<8] <<5

5 Y

How about shift/add/shift/add ...?
— KCM multiplier: Y =231*X = 7*33*X = (28 - 20)*(2°% + 20)*X

X

y

Y

No simple algorithm exists to determine the optimal KCM representation.

Most use exhaustive search method.
Spring 2012 EECS150 - Lec20-arith2 Page 17

Fixed Shifters / Rotators

“fixed" shifters Xe X X3 Xp X

“"hardwire" the shift Logical
amount into the circuit. Shift
Ex: verilog: X > 2 7 95 Y5 Va Vo Y2 i Yo
— (right shift X by 2 places) 7 & %5 ’4 ’3 "2 1 70

Fixed shift/rotator is Y7 Vg VY5 Y4 Y3 Yo Y1 Yo
nothing but wires!
XT X6 X5 X4 XS X2 X-I XO

S0 what? " Avithmetic
Shift

Y7 Yg Y5 Y4 Y3 Yo Y91 Yo

Spring 2012 EECS150 - Lec20-arith2 Page 18

Variable Shifters / Rotators

Example: X >> S, where S is unknown when we synthesize the circuit.

Uses: shift instruction in processors (ARM includes a shift on every
instruction), floating-point arithmetic, division/multiplication by
powers of 2, etc.

One way to build this is a simple shift-register:

a) Load word, b) shift enable for S cycles, c) read word.

X[3] x[2] X[1] x[0] LD Shift enable

: L I
from controller
[T T + I
1 —1 —1 —1

A TG T@ T@ 1

y[3] y[2] y[1] yl0]

Worst case delay O(N), not good for processor design.
Can we do it in O(logN) time and fit it in one cycle?

Spring 2012 EECS150 - Lec20-arith2 Page 19

Log Shifter / Rotator

Log(N) stages, each shifts (or not) by a power of 2 places,

X Xg X X, X X, X4 X
$:
Shift by N/2
|
2]]]]] J]]
. — — — — — —
Shift by 2
|

[l = [l = = = = = = = = = [l = [l =

2]]]] J]]]

] | | | | | | _l Shift by 1
T | 1 |

= = = = = =

% J) | | I I]]

Y7 Y Y5 Yq Yg Yo ¥4 Yo
Spring 2012 EECS150 - Lec20-arith2 Page 20

LUT Magplng of Log shifter

__

325 32 5325 32 532 32
—» 0|1 =» 0|2 0|4—>» 0|8 >»0]| 16>

‘\\ __________________________ ,'I ‘\ _____________________ } _____ ,’I |
s0O s1 s2 s3 s4

Efficient with 2tol multiplexors, for instance, 3LUTs.
24
0
01

10
11

Virtex6 has 6LUTs. Naturally makes 4ol muxes:

Reorganize shifter to use 4tol muxes.

32 32 32 32
—»0|1]2|3>{0]4|8|12}>>»0]16 |~>

A ¥ | Final stage
{s0,s1} {s2,s3} s4 uses F7 mux

Spring 2012 EECS150 - Lec20-arith2 Page 21

“Improved” Shifter / Rotator

Could it lead to even less delay?

How about this approach?

—n » = XD
» » » »
» » » »
» - - -
» ' ? 3 -

» » » »

» » n n
T;l_q _4/1T __f]T __f'—?
76543210 " = = 76543210 76543210 76543210 g

L] Y Y
Y7 Y2 ¥q Yo

What is the delay of these big muxes?
Look a transistor-level implementation?

Spring 2012 EECS150 - Lec20-arith2 Page 22

Barrel Shifter
‘,;2 ‘,71 V|70 Cost/delay?
o

.
Y

Yo - (don't forget
ﬂ tL > the decoder)

Dt
\\Jj_\

|
|
|

transmission
gate

s
il
il
B
il
B

y

|
1

control
line

]

BB

7 ’ /
”~ L, -
- 7 4 4 4 4 ! y
data - . - 2 - = ‘ J >_ 4
7 7 7 7 s)
s Ve V s s - ”
s s s 4

line

===} - — - — Y e - - _ 4 ___

M
Js!
g
s
Ji
&
il
&

|5B

ot
g

BT
ys

TN
N
N

e e

I
|
|
I
|

shift
amount 3

o B fH
A I \
N S

decoder 7 Page 23

<,

=

<,
<

<,

Connection Matrix

<,

<,
<

X4

S

aal

S

St

el

T

s = s = WS = =

i ST S S A S S s
i S RS = = S S s

Spring 2012

sl S RS = = S S s

808 B B8 B B BB

o008 B B8 B B BB

s IS = = S S s S

St

EECS150 - Lec20-arith2

%0
\Y; Generally useful structure:

- N2 control points.
y
@ L - What other interesting

functions can it do?

Page 24

Cross-bar Switch

TR TR
B W W W W W W
S W W W W >
W W W W W W
q @\ | i ja | | @
W W W W - W -
g m @ @ _ja la_\|m @\m>
N W W W W W < W >
B W W W W< W< WL < >

Nlog(N) control
signals.

Supports all
Interesting
permutations
- All one-to-one and
one-to-many
connections.
Commonly used in
communication
hardware (switches,
routers).

Page 25

