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Multiplication
   a3 a2 a1 a0 Multiplicand
   b3 b2 b1 b0 Multiplier

  X a3b0 a2b0 a1b0 a0b0

      a3b1 a2b1 a1b1 a0b1    Partial

  a3b2 a2b2 a1b2 a0b2     products
a3b3 a2b3 a1b3 a0b3 

   . . .           a1b0+a0b1 a0b0   Product

 Many different circuits exist for multiplication.
Each one has a different balance between 
speed (performance) and amount of logic (cost).
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“Shift and Add” Multiplier
• Sums each partial 

product, one at a time.
• In binary, each partial 

product is shifted 
versions of A or 0.

Control Algorithm:
 1. P ← 0, A ← multiplicand, 
 B ← multiplier
 2. If LSB of B==1 then add A to P
       else add 0
 3. Shift [P][B] right 1
 4. Repeat steps 2 and 3 n-1 times.
 5. [P][B] has product.

• Cost α n, Τ = n clock cycles.
• What is the critical path for 

determining the min clock 
period?
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“Shift and Add” Multiplier
Signed Multiplication:
 Remember for 2’s complement numbers MSB has negative weight:

 ex: -6 = 110102 = 0•20 + 1•21 + 0•22 + 1•23 - 1•24

        =   0    +   2   +   0   +   8    -  16  =  -6

• Therefore for multiplication:
  a) subtract final partial product
  b) sign-extend partial products
• Modifications to shift & add circuit:
  a) adder/subtractor
  b) sign-extender on P shifter register 
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Bit-serial Multiplier
• Bit-serial multiplier (n2 cycles, one bit of result per n cycles):

• Control Algorithm:

repeat n cycles {  // outer (i) loop
 repeat n cycles{   // inner (j) loop
  shiftA, selectSum, shiftHI
 }
 shiftB, shiftHI, shiftLOW, reset
}

Note: The occurrence of a control
signal x means x=1.  The absence
of x means x=0.
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Array Multiplier

Each row:  n-bit adder with AND gates

What is the critical path?

Single cycle multiply:  Generates all n partial products simultaneously.
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Carry-Save Addition
• Speeding up multiplication is a 

matter of speeding up the 
summing of the partial products.

• “Carry-save” addition can help.
• Carry-save addition passes 

(saves) the carries to the output, 
rather than propagating them.

• Example: sum three numbers,
 310 = 0011, 210 = 0010, 310 = 0011

    310  0011
+  210  0010
       c  0100  =  410   
       s  0001  =  110

       310  0011
       c  0010  =  210

       s  0110  =  610

           1000  =  810

 

carry-save add

carry-save add

carry-propagate add

• In general, carry-save addition takes in 3 numbers and produces 2.
• Whereas, carry-propagate takes 2 and produces 1.
• With this technique, we can avoid carry propagation until final addition
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Carry-save Circuits

• When adding sets of numbers, 
carry-save can be used on all 
but the final sum.

• Standard adder (carry 
propagate) is used for final sum.

• Carry-save is fast (no carry 
propagation) and cheap (same 
cost as ripple adder)
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Array Multiplier using Carry-save Addition

Fast carry-
propagate adder
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Carry-save Addition
CSA is associative and communitive.  For example:
      (((X0 + X1) + X2 ) + X3 ) = ((X0 + X1) +( X2 + X3 ))

• A balanced tree can be used to 
reduce the logic delay.

• This structure is the basis of the 
Wallace Tree Multiplier.

• Partial products are summed 
with the CSA tree.  Fast CPA 
(ex: CLA) is used for final sum.

• Multiplier delay α log3/2N + log2N
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Constant Multiplication
• Our discussion so far has assumed both the multiplicand 

(A) and the multiplier (B) can vary at runtime.
• What if one of the two is a constant?
    Y = C * X
• “Constant Coefficient” multiplication comes up often in 

signal processing and other hardware.  Ex:
    yi = αyi-1+ xi 

  where  α is an application dependent constant that is 
hard-wired into the circuit.

• How do we build and array style (combinational) multiplier 
that takes advantage of the constancy of one of the 
operands?

xi yi
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Multiplication by a Constant
• If the constant C in C*X is a power of 2, then the multiplication is simply 

a shift of X.  
• Ex: 4*X

• What about division?

• What about multiplication by non- powers of 2?
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Multiplication by a Constant
• In general, a combination of fixed shifts and addition:

– Ex: 6*X  =  0110 * X  =  (22 + 21)*X

– Details:
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Multiplication by a Constant
• Another example: C = 2310 = 010111

• In general, the number of additions equals the number of 
1’s in the constant minus one.

• Using carry-save adders (for all but one of these) helps 
reduce the delay and cost, but the number of adders is still 
the number of 1’s in C minus 2.

• Is there a way to further reduce the number of adders (and 
thus the cost and delay)?
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Multiplication using Subtraction
• Subtraction is ~ the same cost and delay as addition.
• Consider C*X where C is the constant value 1510 = 01111.

        C*X requires 3 additions.
• We can “recode” 15 

   from  01111 =  (23 + 22 + 21 + 20 )
   to      10001 = (24 - 20 )
 where 1 means negative weight.

• Therefore, 15*X can be implemented with only one 
subtractor.
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Canonic Signed Digit Representation
• CSD represents numbers using 1, 1, & 0 with the least 

possible number of non-zero digits.  
– Strings of 2 or more non-zero digits are replaced.
– Leads to a unique representation.

• To form CSD representation might take 2 passes:
– First pass: replace all occurrences of 2 or more 1’s: 
    01..10 by 10..10
– Second pass: same as a above, plus replace 0110 by 0010

• Examples:

• Can we further simplify the multiplier circuits? 

0010111  =  23
0011001
0101001 = 32 - 8 - 1

011101  =  29
100101  =  32 - 4 + 1

0110110  =  54
1011010
1001010 = 64 - 8 - 2
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“Constant Coefficient Multiplication” (KCM)
Binary multiplier:  Y = 231*X = (27 + 26 + 25 + 22 + 21+20)*X

• CSD helps, but the multipliers are limited to shifts followed by adds.
– CSD multiplier:  Y = 231*X = (28 - 25 + 23 - 20)*X

• How about shift/add/shift/add …?
– KCM multiplier:  Y = 231*X = 7*33*X = (23 - 20)*(25 + 20)*X

• No simple algorithm exists to determine the optimal KCM representation.
• Most use exhaustive search method.
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• “fixed” shifters 
“hardwire” the shift 
amount into the circuit.

• Ex:  verilog: X >> 2 
– (right shift X by 2 places)

• Fixed shift/rotator is 
nothing but wires!  

  So what?
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Fixed Shifters / Rotators

Logical
Shift

Rotate

Arithmetic
Shift
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Variable Shifters / Rotators
• Example:  X >> S, where S is unknown when we synthesize the circuit.
• Uses: shift instruction in processors (ARM includes a shift on every 

instruction), floating-point arithmetic, division/multiplication by 
powers of 2, etc.  

• One way to build this is a simple shift-register:
a) Load word,  b) shift enable for S cycles,  c) read word.

– Worst case delay O(N) , not good for processor design.
– Can we do it in O(logN) time and fit it in one cycle?
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Log Shifter / Rotator
• Log(N) stages, each shifts (or not) by a power of 2 places, 

S=[s2;s1;s0]:

Shift by N/2

Shift by 2

Shift by 1
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LUT Mapping of Log shifter 

21

Efficient with 2to1 multiplexors, for instance, 3LUTs.

Virtex6 has 6LUTs.  Naturally makes 4to1 muxes:

Reorganize shifter to use 4to1 muxes.

Final stage 
uses F7 mux 
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“Improved” Shifter / Rotator
• How about this approach?  Could it lead to even less delay?

• What is the delay of these big muxes?
• Look a transistor-level implementation?
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Barrel Shifter
• Cost/delay?

– (don’t forget 
the decoder)
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Connection Matrix

• Generally useful structure:
– N2 control points.  
– What other interesting 

functions can it do?
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Cross-bar Switch
• Nlog(N) control 

signals.
• Supports all 

interesting 
permutations
– All one-to-one and 

one-to-many 
connections.

• Commonly used in 
communication 
hardware (switches, 
routers).
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