
Spring 2012 EECS150 - Lec20-arith2 Page

EECS150 - Digital Design
Lecture 20 - Arithmetic Blocks,

Part 2 + Shifters

March 22, 2012
John Wawrzynek

1

Spring 2012 EECS150 - Lec20-arith2 Page

Multiplication
 a3 a2 a1 a0 Multiplicand
 b3 b2 b1 b0 Multiplier

 X a3b0 a2b0 a1b0 a0b0

 a3b1 a2b1 a1b1 a0b1 Partial

 a3b2 a2b2 a1b2 a0b2 products
a3b3 a2b3 a1b3 a0b3

 . . . a1b0+a0b1 a0b0 Product

 Many different circuits exist for multiplication.
Each one has a different balance between
speed (performance) and amount of logic (cost).

2

Spring 2012 EECS150 - Lec20-arith2 Page

“Shift and Add” Multiplier
• Sums each partial

product, one at a time.
• In binary, each partial

product is shifted
versions of A or 0.

Control Algorithm:
 1. P ← 0, A ← multiplicand,
 B ← multiplier
 2. If LSB of B==1 then add A to P
 else add 0
 3. Shift [P][B] right 1
 4. Repeat steps 2 and 3 n-1 times.
 5. [P][B] has product.

• Cost α n, Τ = n clock cycles.
• What is the critical path for

determining the min clock
period?

3

Spring 2012 EECS150 - Lec20-arith2 Page

“Shift and Add” Multiplier
Signed Multiplication:
 Remember for 2’s complement numbers MSB has negative weight:

 ex: -6 = 110102 = 0•20 + 1•21 + 0•22 + 1•23 - 1•24

 = 0 + 2 + 0 + 8 - 16 = -6

• Therefore for multiplication:
 a) subtract final partial product
 b) sign-extend partial products
• Modifications to shift & add circuit:
 a) adder/subtractor
 b) sign-extender on P shifter register

4

Spring 2012 EECS150 - Lec20-arith2 Page

Bit-serial Multiplier
• Bit-serial multiplier (n2 cycles, one bit of result per n cycles):

• Control Algorithm:

repeat n cycles { // outer (i) loop
 repeat n cycles{ // inner (j) loop
 shiftA, selectSum, shiftHI
 }
 shiftB, shiftHI, shiftLOW, reset
}

Note: The occurrence of a control
signal x means x=1. The absence
of x means x=0.

5

Spring 2012 EECS150 - Lec20-arith2 Page

Array Multiplier

Each row: n-bit adder with AND gates

What is the critical path?

Single cycle multiply: Generates all n partial products simultaneously.

6

Spring 2012 EECS150 - Lec20-arith2 Page

Carry-Save Addition
• Speeding up multiplication is a

matter of speeding up the
summing of the partial products.

• “Carry-save” addition can help.
• Carry-save addition passes

(saves) the carries to the output,
rather than propagating them.

• Example: sum three numbers,
 310 = 0011, 210 = 0010, 310 = 0011

 310 0011
+ 210 0010
 c 0100 = 410
 s 0001 = 110

 310 0011
 c 0010 = 210

 s 0110 = 610

 1000 = 810

carry-save add

carry-save add

carry-propagate add

• In general, carry-save addition takes in 3 numbers and produces 2.
• Whereas, carry-propagate takes 2 and produces 1.
• With this technique, we can avoid carry propagation until final addition
 7

Spring 2012 EECS150 - Lec20-arith2 Page

Carry-save Circuits

• When adding sets of numbers,
carry-save can be used on all
but the final sum.

• Standard adder (carry
propagate) is used for final sum.

• Carry-save is fast (no carry
propagation) and cheap (same
cost as ripple adder)

8

Spring 2012 EECS150 - Lec20-arith2 Page

Array Multiplier using Carry-save Addition

Fast carry-
propagate adder

9

Spring 2012 EECS150 - Lec20-arith2 Page

Carry-save Addition
CSA is associative and communitive. For example:
 (((X0 + X1) + X2) + X3) = ((X0 + X1) +(X2 + X3))

• A balanced tree can be used to
reduce the logic delay.

• This structure is the basis of the
Wallace Tree Multiplier.

• Partial products are summed
with the CSA tree. Fast CPA
(ex: CLA) is used for final sum.

• Multiplier delay α log3/2N + log2N

10

Spring 2012 EECS150 - Lec20-arith2 Page

Constant Multiplication
• Our discussion so far has assumed both the multiplicand

(A) and the multiplier (B) can vary at runtime.
• What if one of the two is a constant?
 Y = C * X
• “Constant Coefficient” multiplication comes up often in

signal processing and other hardware. Ex:
 yi = αyi-1+ xi

 where α is an application dependent constant that is
hard-wired into the circuit.

• How do we build and array style (combinational) multiplier
that takes advantage of the constancy of one of the
operands?

xi yi

11

Spring 2012 EECS150 - Lec20-arith2 Page

Multiplication by a Constant
• If the constant C in C*X is a power of 2, then the multiplication is simply

a shift of X.
• Ex: 4*X

• What about division?

• What about multiplication by non- powers of 2?

12

Spring 2012 EECS150 - Lec20-arith2 Page

Multiplication by a Constant
• In general, a combination of fixed shifts and addition:

– Ex: 6*X = 0110 * X = (22 + 21)*X

– Details:

13

Spring 2012 EECS150 - Lec20-arith2 Page

Multiplication by a Constant
• Another example: C = 2310 = 010111

• In general, the number of additions equals the number of
1’s in the constant minus one.

• Using carry-save adders (for all but one of these) helps
reduce the delay and cost, but the number of adders is still
the number of 1’s in C minus 2.

• Is there a way to further reduce the number of adders (and
thus the cost and delay)?

14

Spring 2012 EECS150 - Lec20-arith2 Page

Multiplication using Subtraction
• Subtraction is ~ the same cost and delay as addition.
• Consider C*X where C is the constant value 1510 = 01111.

 C*X requires 3 additions.
• We can “recode” 15

 from 01111 = (23 + 22 + 21 + 20)
 to 10001 = (24 - 20)
 where 1 means negative weight.

• Therefore, 15*X can be implemented with only one
subtractor.

15

Spring 2012 EECS150 - Lec20-arith2 Page

Canonic Signed Digit Representation
• CSD represents numbers using 1, 1, & 0 with the least

possible number of non-zero digits.
– Strings of 2 or more non-zero digits are replaced.
– Leads to a unique representation.

• To form CSD representation might take 2 passes:
– First pass: replace all occurrences of 2 or more 1’s:
 01..10 by 10..10
– Second pass: same as a above, plus replace 0110 by 0010

• Examples:

• Can we further simplify the multiplier circuits?

0010111 = 23
0011001
0101001 = 32 - 8 - 1

011101 = 29
100101 = 32 - 4 + 1

0110110 = 54
1011010
1001010 = 64 - 8 - 2

16

Spring 2012 EECS150 - Lec20-arith2 Page

“Constant Coefficient Multiplication” (KCM)
Binary multiplier: Y = 231*X = (27 + 26 + 25 + 22 + 21+20)*X

• CSD helps, but the multipliers are limited to shifts followed by adds.
– CSD multiplier: Y = 231*X = (28 - 25 + 23 - 20)*X

• How about shift/add/shift/add …?
– KCM multiplier: Y = 231*X = 7*33*X = (23 - 20)*(25 + 20)*X

• No simple algorithm exists to determine the optimal KCM representation.
• Most use exhaustive search method.

17

• “fixed” shifters
“hardwire” the shift
amount into the circuit.

• Ex: verilog: X >> 2
– (right shift X by 2 places)

• Fixed shift/rotator is
nothing but wires!

 So what?

Spring 2012 EECS150 - Lec20-arith2 Page

Fixed Shifters / Rotators

Logical
Shift

Rotate

Arithmetic
Shift

18

Spring 2012 EECS150 - Lec20-arith2 Page

Variable Shifters / Rotators
• Example: X >> S, where S is unknown when we synthesize the circuit.
• Uses: shift instruction in processors (ARM includes a shift on every

instruction), floating-point arithmetic, division/multiplication by
powers of 2, etc.

• One way to build this is a simple shift-register:
a) Load word, b) shift enable for S cycles, c) read word.

– Worst case delay O(N) , not good for processor design.
– Can we do it in O(logN) time and fit it in one cycle?

19

Spring 2012 EECS150 - Lec20-arith2 Page

Log Shifter / Rotator
• Log(N) stages, each shifts (or not) by a power of 2 places,

S=[s2;s1;s0]:

Shift by N/2

Shift by 2

Shift by 1

20

Spring 2012 EECS150 - Lec20-arith2 Page

LUT Mapping of Log shifter

21

Efficient with 2to1 multiplexors, for instance, 3LUTs.

Virtex6 has 6LUTs. Naturally makes 4to1 muxes:

Reorganize shifter to use 4to1 muxes.

Final stage
uses F7 mux

Spring 2012 EECS150 - Lec20-arith2 Page

“Improved” Shifter / Rotator
• How about this approach? Could it lead to even less delay?

• What is the delay of these big muxes?
• Look a transistor-level implementation?

22

Spring 2012 EECS150 - Lec20-arith2 Page

Barrel Shifter
• Cost/delay?

– (don’t forget
the decoder)

23

Spring 2012 EECS150 - Lec20-arith2 Page

Connection Matrix

• Generally useful structure:
– N2 control points.
– What other interesting

functions can it do?

24

Spring 2012 EECS150 - Lec20-arith2 Page

Cross-bar Switch
• Nlog(N) control

signals.
• Supports all

interesting
permutations
– All one-to-one and

one-to-many
connections.

• Commonly used in
communication
hardware (switches,
routers).

25

