<u>EECS150 - Digital Design</u> <u>Lecture 20 - Arithmetic Blocks,</u> <u>Part 2 + Shifters</u>

March 22, 2012 John Wawrzynek

Many different circuits exist for multiplication. Each one has a different balance between speed (performance) and amount of logic (cost).

"Shift and Add" Multiplier

- What is the critical path for
- determining the min clock period?

- 3. Shift [P][B] right 1
- 4. Repeat steps 2 and 3 n-1 times.
- 5. [P][B] has product.

"Shift and Add" Multiplier

Signed Multiplication:

Remember for 2's complement numbers MSB has negative weight:

$$X = \sum_{i=0}^{N-2} x_i 2^i - x_{n-1} 2^{n-1}$$

ex: $-6 = 11010_2 = 0 \cdot 2^0 + 1 \cdot 2^1 + 0 \cdot 2^2 + 1 \cdot 2^3 - 1 \cdot 2^4$ = 0 + 2 + 0 + 8 - 16 = -6

• Therefore for multiplication:

a) subtract final partial product

- b) sign-extend partial products
- Modifications to shift & add circuit:
 - a) adder/subtractor
 - b) sign-extender on P shifter register

Spring 2012

Bit-serial Multiplier

• Bit-serial multiplier (n² cycles, one bit of result per n cycles):

• Control Algorithm:

```
repeat n cycles { // outer (i) loop
repeat n cycles { // inner (j) loop
shiftA, selectSum, shiftHI
}
Note: The occurrence of a control
signal x means x=1. The absence
of x means x=0.
```

Array Multiplier

Single cycle multiply: Generates all n partial products simultaneously.

EECS150 - Lec20-arith2

Carry-Save Addition

- Speeding up multiplication is a matter of speeding up the summing of the partial products.
- "Carry-save" addition can help.
- Carry-save addition passes (saves) the carries to the output, rather than propagating them.

tion can help.
an passes
s to the output,
gating them.
carry-save add
carry-propagate add

$$\begin{cases}
3_{10} & 0011 \\
0 & 0010 \\
0 & 0010 \\
0 & 0011 \\
0 & 0001 \\
0 & 0011 \\
0 & 0011 \\
0 & 0011 \\
0 & 0011 \\
0 & 0010 \\
0 & 010 \\
0 & 010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 0010 \\
0 & 001$$

- In general, *carry-save* addition takes in 3 numbers and produces 2.
- Whereas, *carry-propagate* takes 2 and produces 1.
- With this technique, we can avoid carry propagation until final addition Spring 2012 EECS150 - Lec20-arith2

Page 7

- When adding sets of numbers, carry-save can be used on all but the final sum.
- Standard adder (carry propagate) is used for final sum.
- Carry-save is fast (no carry propagation) and cheap (same cost as ripple adder)

Array Multiplier using Carry-save Addition

Carry-save Addition

CSA is associative and communitive. For example:

 $(((X_0 + X_1) + X_2) + X_3) = ((X_0 + X_1) + (X_2 + X_3))$

- A balanced tree can be used to reduce the logic delay.
- This structure is the basis of the *Wallace Tree Multiplier*.
- Partial products are summed with the CSA tree. Fast CPA (ex: CLA) is used for final sum.
 - Multiplier delay $\alpha \log_{3/2} N + \log_2 N$

Constant Multiplication

- Our discussion so far has assumed both the multiplicand (A) and the multiplier (B) can vary at runtime.
- What if one of the two is a constant?

$$Y = C * X$$

• "Constant Coefficient" multiplication comes up often in signal processing and other hardware. Ex:

$$y_i = \alpha y_{i-1} + x_i$$
 $x_i \longrightarrow y_i$

where $\,\alpha$ is an application dependent constant that is hard-wired into the circuit.

 How do we build and array style (combinational) multiplier that takes advantage of the constancy of one of the operands?

Spring 2012

Multiplication by a Constant

- If the constant C in C*X is a power of 2, then the multiplication is simply a shift of X.
- Ex: 4*X

- What about division?
- What about multiplication by non- powers of 2?

Multiplication by a Constant

In general, a combination of fixed shifts and addition:
 - Ex: 6*X = 0110 * X = (2² + 2¹)*X

- Details:

Multiplication by a Constant

• Another example: $C = 23_{10} = 010111$

- In general, the number of additions equals the number of 1's in the constant minus one.
- Using carry-save adders (for all but one of these) helps reduce the delay and cost, but the number of adders is still the number of 1's in C minus 2.
- Is there a way to further reduce the number of adders (and thus the cost and delay)?

Spring 2012

Multiplication using Subtraction

- Subtraction is ~ the same cost and delay as addition.
- Consider C*X where C is the constant value 15₁₀ = 01111.
 C*X requires 3 additions.
- We can "recode" 15

from
$$01111 = (2^3 + 2^2 + 2^1 + 2^0)$$

to $1000\overline{1} = (2^4 - 2^0)$

where 1 means negative weight.

• Therefore, 15*X can be implemented with only one subtractor.

Page 15

Canonic Signed Digit Representation

- CSD represents numbers using 1, 1, & 0 with the least possible number of non-zero digits.
 - Strings of 2 or more non-zero digits are replaced.
 - Leads to a unique representation.
- To form CSD representation might take 2 passes:
 - First pass: replace all occurrences of 2 or more 1's:

01..10 by 10..<u>1</u>0

- Second pass: same as a above, plus replace $0\overline{1}10$ by $00\overline{1}0$
- Examples:
 - 011101 = 29 100T01 = 32 - 4 + 1 0010111 = 23 0110110 = 54 10T10T0 010T00T = 32 - 8 - 1 100T0T0 = 64 - 8 - 2
- Can we further simplify the multiplier circuits?

Spring 2012

"Constant Coefficient Multiplication" (KCM)

Binary multiplier: $Y = 231^*X = (2^7 + 2^6 + 2^5 + 2^2 + 2^{1}+2^{0})^*X$

- CSD helps, but the multipliers are limited to shifts followed by adds.
 - CSD multiplier: $Y = 231^*X = (2^8 2^5 + 2^3 2^0)^*X$

- How about shift/add/shift/add ...?
 - KCM multiplier: $Y = 231*X = 7*33*X = (2^3 2^0)*(2^5 + 2^0)*X$

- No simple algorithm exists to determine the optimal KCM representation.
- Most use exhaustive search method.
 Spring 2012
 EECS150 Lec20-arith2

Fixed Shifters / Rotators

- "fixed" shifters
 "hardwire" the shift
 amount into the circuit.
- Ex: verilog: X >> 2
 - (right shift X by 2 places)
- Fixed shift/rotator is nothing but wires! So what?

<u>Variable Shifters / Rotators</u>

- Example: X >> S, where S is unknown when we synthesize the circuit.
- Uses: shift instruction in processors (ARM includes a shift on every instruction), floating-point arithmetic, division/multiplication by powers of 2, etc.
- One way to build this is a simple shift-register:
 - a) Load word, b) shift enable for S cycles, c) read word.

- Worst case delay O(N) , not good for processor design.
- Can we do it in O(logN) time and fit it in one cycle?

Log Shifter / Rotator

• Log(N) stages, each shifts (or not) by a power of 2 places,

Spring 2012

<u>"Improved" Shifter / Rotator</u>

• How about this approach? Could it lead to even less delay?

- What is the delay of these big muxes?
- Look a transistor-level implementation?

Barrel Shifter

Cost/delay? - (don't forget the decoder)

Page 23

Connection Matrix

Generally useful structure:

- N^2 control points.
- What other interesting functions can it do?

Cross-bar Switch

- Nlog(N) control signals.
- Supports all interesting permutations
 - All one-to-one and one-to-many connections.
- Commonly used in communication hardware (switches, routers).