Spring 2012

EECS150 - Digital Design
Lecture 21 - Design Blocks

April 3, 2012
John Wawrzynek

EECS150 - Lec21-db3

Fixed Shifters / Rotators

“fixed" shifters Xe X X3 Xp X

“"hardwire" the shift Logical
amount into the circuit. Shift
Ex: verilog: X > 2 7 95 Y5 Va Vo Y2 i Yo
— (right shift X by 2 places) 7 & %5 ’4 ’3 "2 1 70

Fixed shift/rotator is Y7 Vg VY5 Y4 Y3 Yo Y1 Yo
nothing but wires!
XT X6 X5 X4 XS X2 X-I XO

S0 what? " Avithmetic
Shift

Y7 Yg Y5 Y4 Y3 Yo Y91 Yo

Spring 2012 EECS150 - Lec21-db3 Page 2

Variable Shifters / Rotators

Example: X >> S, where S is unknown when we synthesize the circuit.

Uses: shift instruction in processors (ARM includes a shift on every
instruction), floating-point arithmetic, division/multiplication by
powers of 2, etc.

One way to build this is a simple shift-register:

a) Load word, b) shift enable for S cycles, c) read word.

X[3] x[2] X[1] x[0] LD Shift enable

: L I
from controller
[T T + I
1 —1 —1 —1

A TG T@ T@ 1

y[3] y[2] y[1] yl0]

Worst case delay O(N), not good for processor design.
Can we do it in O(logN) time and fit it in one cycle?

Spring 2012 EECS150 - Lec21-db3 Page 3

Log Shifter / Rotator

Log(N) stages, each shifts (or not) by a power of 2 places,

X? Ka X5 X4 Xa X2 J(.I J(U

Shift by N/2

[l = [l = = = = = = = = = [l = [l =

5]]]]]]]]

]] _ _ _ _ N
T ' I Shift by 2
|

[l = [l = = = = = = = = = [l = [l =

2]]]] J]]]

] | | | | | | _l Shift by 1
T | 1 |

= = = = = =

% J) | | I I]]

Y7 Y Y5 Yq Yg Yo ¥4 Yo
Spring 2012 EECS150 - Lec21-db3 Page 4

LUT Magplng of Log shifter

__

325 32 5325 32 532 32
—» 0|1 =» 0|2 0|4—>» 0|8 >»0]| 16>

‘\\ __________________________ ,'I ‘\ _____________________ } _____ ,’I |
s0O s1 s2 s3 s4

Efficient with 2tol multiplexors, for instance, 3LUTs.
24
0
01

10
11

Virtex6 has 6LUTs. Naturally makes 4ol muxes:

Reorganize shifter to use 4tol muxes.

32 32 32 32
—»0|1]2|3>{0]4|8|12}>>»0]16 |~>

A ¥ | Final stage
{s0,s1} {s2,s3} s4 uses F7 mux

Spring 2012 EECS150 - Lec21-db3 Page 5

“Improved” Shifter / Rotator

How about this approach? Could it lead to even less delay?

—n » = XD
» » » »
» » » »
5 L L -
» L L L

» » » »

» » n n
T;l_q _4/1T __f]T __f'—?
76543210 " = n 76543210 76543210 76543210 S

Y Y Y
Y7 Y2 ¥q Yo

What is the delay of these big muxes?
Look a transistor-level implementation?

Spring 2012 EECS150 - Lec21-db3 Page 6

Barrel Shifter
‘,;2 ‘,71 V|70 Cost/delay?
o

.
Y

Yo - (don't forget
ﬂ tL > the decoder)

Dt
\\Jj_\

|
|
|

transmission
gate

s
il
il
B
il
B

y

|
1

control
line

]

BB

7 ’ /
”~ L, -
- 7 4 4 4 4 ! y
data - . - 2 - = ‘ J >_ 4
7 7 7 7 s)
s Ve V s s - ”
s s s 4

line

===} - — - — Y e - - _ 4 ___

M
Js!
g
s
Ji
&
il
&

|5B

ot
g

BT
ys

TN
N
N

e e

I
|
|
I
|

it Page 7

amount 3

o B fH
A I \
N S

decoder

<,

=

<,
<

<,

Connection Matrix

<,

<,
<

X4

S

aubal

aal

S

St

el

T

s = s = WS = =

i ST S S A S S s
i S RS = = S S s

Spring 2012

sl S RS = = S S s

808 B B8 B B BB

o008 B B8 B B BB

s IS = = S S s S

St

EECS150 - Lec21-db3

%0
\Y; Generally useful structure:

- N2 control points.

- What other interesting
functions can it do?

Page 8

Cross-bar Switch

TR TR
B W W W W W W
S W W W W >
W W W W W W
q @\ | i ja | | @
W W W W - W -
g m @ @ _ja la_\|m @\m>
N W W W W W < W >
B W W W W< W< WL < >

Nlog(N) control
signals.

Supports all
Interesting
permutations
- All one-to-one and
one-to-many
connections.
Commonly used in
communication
hardware (switches,
routers).

Page 9

Linear Feedback Shift Reqgisters (LFSRS)

These are n-bit counters exhibiting pseudo-random behavior.
Built from simple shift-registers with a small number of xor gates.
Used for:

— random number generation

— counters

— error checking and correction
Advantages:

— very little hardware

— high speed operation
Example 4-bit LFSR:

aa|®, P @39, O 29, P o120

oL | |

Spring 2012 EECS150 — Lec21-db3 Page 10

4-bit LFSR

A
4|9, P[" a3, P @2|®,P a1,
J J l A 0001
0010
oL 0100
Circuit counts through 24-7 different oloToTz o 1000
non-zero bit patterns. xor 0000 0 0011
Leftmost bit decides whether the o[ojoj1jojo (1)1(1)8
“10011” xor pattern is used to xor 0 0 0 0 0
compute the next value or if the o[o]1]o]o]o 1011
register just shifts left. xor g ‘1’ g g g ; 0101
Can build a similar circuit with any wor 100711 1010
number of FFs, may need more xor oloToTaT1lo 0111
gates. xor 0 0 0 0 0 1”?
In general, with n flip-flops, 27-1 o[oJ1]1]o]o 1101
different non-zero bit patterns. xor 0 0 0 0 0
iti i i 4lasazat o[1j1jojojo 1001
(Intuitively, this is a counter that xor 100 11 0001
wraps around many times and in a olzlolzlz

strange way.)
Spring 2012 EECS150 — Lec21-db3 Page 11

Applications of LFSRs

« (Can be used as a random

 Performance:

— In general, xors are only ever 2- number generator.

input and never connect in series. — Sequence is a pseudo-
— Therefore the minimum clock period random sequence:

for these circuits is: « numbers appear in a

random sequence

T > T, inputxor T ClOCk Overhead
 repeats every 2°-1 patterns

— Very little latency, and independent _ Random numbers useful in:
of n! |
_ « computer graphics
« This can be used as a fast counter, . cryptography
if the particular sequence of count + automatic testing
values is not |mportant. | « Used for error detection and
— Example: micro-code micro-pc correction
* CRC (cyclic redundancy
codes)

» cthernet uses them

Spring 2012 EECS150 — Lec21-db3 Page 12

Galois Fields - the theory behind LFSRs

LFSR circuits performs

Example fields:

multiplication on a field. — set of rational numbers
A field is defined as a set with the — set of real numbers
following: — set of integers is not a field
— two operations defined on it: (why?)
« “addition” and “multiplication” ¢ FEinite fields are called Galois
— closed under these operations fields.
— associative and distributive laws * Example:
hold — Binary numbers 0,1 with XOR
— additive and multiplicative identity as “addition” and AND as
elements “multiplication”.
— additive inverse for every — Called GF(2).
element

— multiplicative inverse for every
non-zero element

Spring 2012 EECS150 — Lec21-db3 Page 13

Galois Fields - The theory behind LFSRs

Consider polynomials whose coefficients come from GF(2).

Each term of the form x” is either present or absent.

Examples: 0, I, x, x?, and x” + x¢ + |
:].x7_|_].x6+0.x5_|_0.x4_|_0.x3_|_0.x2_|_0.x1_|_].x0

With addition and multiplication these form a field:

“Add”: XOR each element individually with no carry:

x+x’+ +x+1
+ x*+ +x2 +x
3 + x2 +]

“Multiply”: multiplying by x” is like shifting to the left.

x> +x+1
X x+ 1

x> +x+1
¥ +x2+x
x3 +]

Spring 2012 EECS150 — Lec21-db3 Page 14

Galois Fields - The theory behind LFSRs

These polynomials form a
Galois (finite) field if we take the
results of this multiplication
modulo a prime polynomial p(x).
— A prime polynomial is one that

cannot be written as the product
of two non-trivial polynomials
q(x)r(x)

— Perform modulo operation by
subtracting a (polynomial)
multiple of p(x) from the result.

If the multiple is 1, this
corresponds to XOR-ing the
result with p(x).

For any degree, there exists at
least one prime polynomial.

With it we can form GF(2")

Spring 2012

EECS150 — Lec21-db3

Additionally, ...

Every Galois field has a primitive
element, a, such that all non-zero
elements of the field can be
expressed as a power of a.. By

raising a to powers (modulo p(x)),

all non-zero field elements can be
formed.

Certain choices of p(x) make the
simple polynomial x the primitive
element. These polynomials are
called primitive, and one exists for
every degree.

For example, x* + x + 1 is primitive.
So a = xis a primitive element and
successive powers of a will

generate all non-zero elements of
GF(16). Example on next slide.

Page 15

Galois Fields - The theory behind LFSRs

ol = 1 * Note this pattern of coefficients

ol = ¥ matches the bits from our 4-bit
) B LFSR example.

o = X

0(3 :x3

of = x +1

o’ = X2+ x

a’ =x3 +x +1

al = x? + 1 of =x*modx? +x+ 1

o =3 Ty =x?xorx*+x+ 1
=x +

all = x> +x +1 X+ 1

1l = 3 2 . . T
ol =x’ tx‘+x * In general finding primitive

a?=x3+x’+x +1 polynomials is difficult. Most people

o3 =x3+x2 +] just look them up in a table, such
as:

al? = x3 + 1

ol’ = 1

Spring 2012 EECS150 — Lec21-db3 Page 16

Primitive Polynomials

X2+ x+1 xI2 +x0+ x4+ x +1 x?2 +x +1
x5 +x +] xB3+xf+x3+x+1 xP +x0 +1
xt+x +1 x4 + 310 + x6 + y +] 24+ x7 +x2+x +]
x>+ x? +1 x5+ x +1 xP +x3+1
x6+x +1 X164+ 12 + 3 + y +] x26 + x6 + x2 + x +]
x” +x3+1 x17 4+ 3+] X277+ x5+ x2+x +]
X8+ xt+x3+x2+1 X8 + x7 +] 28+ 3 +]
x? +x*+1 X9+ x5+ 2+ x+ | x29 + x +]
x10+x3 +1 x20 4+ x3 +] x30 + x6 + x4 + x +]
x!+x? +1 2+ x2 +] B+ 3+]
32 4+ 7 4 6 + y2
N x° +x7 +x0 +x° +1
Galois Field Hardware

Multiplication by x < shift left

Taking the result mod p(x) <« XOR-ing with the coefficients of p(x)
when the most significant coefficient is 1.
Obtaining all 27-1 non-zero < Shifting and XOR-ing 2"-1 times.
elements by evaluating x*
fork=1, ..., 2"-1
Spring 2012 EECS150 — Lec21-db3 Page 17

Building an LFSR from a Primitive Polynomial

For k-bit LFSR number the flip-flops with FF1 on the right.
The feedback path comes from the Q output of the leftmost FF.
Find the primitive polynomial of the form x* + ... + 1.

The x? = 1 term corresponds to connecting the feedback directly to the D input
of FF 1.

Each term of the form x” corresponds to connecting an xor between FF n and »
+1.

4-bit example, uses x* + x + 1
_ x4) < j
x? < FF4’s Q output Q4|2 0" q3|@, D" q2|Q,P Q1|@,D

A

— X < xor between FF1 and FF2
— I < FF1’s D input

To build an 8-bit LFSR, use the primitive polynomial x% + x* + x* + x? + I and
connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.

CLK

D[« Q Df* Q D‘J—@:‘*Q D‘J—@*Q D‘J—@:‘*Q D QD

A

e e e T4 e I) A D e Qa9 Q3| Q2|90 a1,

CLK

Spring 2012 EECS150 — Lec21-db3 Page 18

Error Correction with LFSRS

11 message bits 4 check bits

bit sequence: 1 0010001110000

ofofo
xor 0 0 0
olofo
xor 0 O
0[0
xor O

0
X0orxr

Q D+ Q D+ Q D‘J—@*Q D<J s

Q4| Q3| Q2| a1, erial_in

CLK

O O|0O|0O|0O|O|O|O|O

Xor

o Rr|R|lo|R|lOo|R|O[R]O R R

Xor

o r|lRr|lo|lr|lo|r|lo[r|o R
o|lo|o|o|o|o|o|lo o
R|lo|lr|[r|lo|lo o
RlR|[olkr kR,

R|lm o

Spring 2012 EECS150 — Lec21-db3 Page 19

Error Correction with LFSRS

XOR Q4 with incoming bit sequence. Now values of shift-register don'’t follow a
fixed pattern. Dependent on input sequence.

Look at the value of the register after 15 cycles: “1010”
Note the length of the input sequence is 24-1 = 15 (same as the number of
different nonzero patters for the original LFSR)

Binary message occupies only 11 bits, the remaining 4 bits are “0000".
— They would be replaced by the final result of our LFSR: “1010”

— If we run the sequence back through the LFSR with the replaced bits, we would get
“0000” for the final result.

— 4 parity bits “neutralize” the sequence with respect to the LFSR.
11001000111 0000 = 1010
11001000111 1010 = 0000

If parity bits not all zero, an error occurred in transmission.

If number of parity bits = log total number of bits, then single bit errors can be
corrected.

Using more parity bits allows more errors to be detected.
Ethernet uses 32 parity bits per frame (packet) with 16-bit LFSR.

Spring 2012 EECS150 — Lec21-db3 Page 20

