
Spring 2012 EECS150 - Lec21-db3 Page 

EECS150 - Digital Design
Lecture 21 - Design Blocks

April 3, 2012
John Wawrzynek

1



• “fixed” shifters 
“hardwire” the shift 
amount into the circuit.

• Ex:  verilog: X >> 2 
– (right shift X by 2 places)

• Fixed shift/rotator is 
nothing but wires!  

  So what?
 

Spring 2012 EECS150 - Lec21-db3 Page 

Fixed Shifters / Rotators

Logical
Shift

Rotate

Arithmetic
Shift

2



Spring 2012 EECS150 - Lec21-db3 Page 

Variable Shifters / Rotators
• Example:  X >> S, where S is unknown when we synthesize the circuit.
• Uses: shift instruction in processors (ARM includes a shift on every 

instruction), floating-point arithmetic, division/multiplication by 
powers of 2, etc.  

• One way to build this is a simple shift-register:
a) Load word,  b) shift enable for S cycles,  c) read word.

– Worst case delay O(N) , not good for processor design.
– Can we do it in O(logN) time and fit it in one cycle?

3



Spring 2012 EECS150 - Lec21-db3 Page 

Log Shifter / Rotator
• Log(N) stages, each shifts (or not) by a power of 2 places, 

S=[s2;s1;s0]:

Shift by N/2

Shift by 2

Shift by 1

4



Spring 2012 EECS150 - Lec21-db3 Page 

LUT Mapping of Log shifter 

5

Efficient with 2to1 multiplexors, for instance, 3LUTs.

Virtex6 has 6LUTs.  Naturally makes 4to1 muxes:

Reorganize shifter to use 4to1 muxes.

Final stage 
uses F7 mux 



Spring 2012 EECS150 - Lec21-db3 Page 

“Improved” Shifter / Rotator
• How about this approach?  Could it lead to even less delay?

• What is the delay of these big muxes?
• Look a transistor-level implementation?

6



Spring 2012 EECS150 - Lec21-db3 Page 

Barrel Shifter
• Cost/delay?

– (don’t forget 
the decoder)

7



Spring 2012 EECS150 - Lec21-db3 Page 

Connection Matrix

• Generally useful structure:
– N2 control points.  
– What other interesting 

functions can it do?

8



Spring 2012 EECS150 - Lec21-db3 Page 

Cross-bar Switch
• Nlog(N) control 

signals.
• Supports all 

interesting 
permutations
– All one-to-one and 

one-to-many 
connections.

• Commonly used in 
communication 
hardware (switches, 
routers).

9



Spring 2012 EECS150 – Lec21-db3 Page 

Linear Feedback Shift Registers (LFSRs)
• These are n-bit counters exhibiting pseudo-random behavior.
• Built from simple shift-registers with a small number of xor gates.
• Used for:

– random number generation
– counters
– error checking and correction

• Advantages:
– very little hardware
– high speed operation

• Example 4-bit LFSR:

10



Spring 2012 EECS150 – Lec21-db3 Page 

4-bit LFSR

• Circuit counts through 24-1 different 
non-zero bit patterns.

• Leftmost bit decides whether the 
“10011” xor pattern is used to 
compute the next value or if the 
register just shifts left.

• Can build a similar circuit with any 
number of FFs, may need more xor 
gates.

• In general, with n flip-flops, 2n-1 
different non-zero bit patterns. 

• (Intuitively, this is a counter that 
wraps around many times and in a 
strange way.)

11



Spring 2012 EECS150 – Lec21-db3 Page 

Applications of LFSRs
• Performance:

– In general, xors are only ever 2-
input and never connect in series.

– Therefore the minimum clock period 
for these circuits is:

  T > T2-input-xor + clock overhead
– Very little latency, and independent 

of n!
• This can be used as a fast counter, 

if the particular sequence of count 
values is not important.  
– Example: micro-code micro-pc

• Can be used as a random 
number generator.  
– Sequence is a pseudo-

random sequence:
• numbers appear in a 

random sequence
• repeats every 2n-1 patterns

– Random numbers useful in:
• computer graphics
• cryptography
• automatic testing

• Used for error detection and 
correction

• CRC (cyclic redundancy 
codes)

• ethernet uses them

12



Spring 2012 EECS150 – Lec21-db3 Page 

Galois Fields - the theory behind LFSRs
• LFSR circuits performs 

multiplication on a field.
• A field is defined as a set with the 

following:
– two operations defined on it:

• “addition” and “multiplication”
– closed under these operations 
– associative and distributive laws 

hold
– additive and multiplicative identity 

elements
– additive inverse for every 

element
– multiplicative inverse for every 

non-zero element

• Example fields:
– set of rational numbers
– set of real numbers
– set of integers is not a field 

(why?)
• Finite fields are called Galois 

fields.  
• Example:  

– Binary numbers 0,1 with XOR 
as “addition” and AND as 
“multiplication”.

– Called GF(2).

13



Spring 2012 EECS150 – Lec21-db3 Page 

Galois Fields - The theory behind LFSRs
• Consider polynomials whose coefficients come from GF(2).
• Each term of the form xn is either present or absent.
• Examples: 0, 1, x, x2, and x7 + x6 + 1 
   = 1·x7 + 1· x6 + 0 · x5 + 0 · x4 + 0 · x3 + 0 · x2 + 0 · x1 + 1· x0 

• With addition and multiplication these form a field:
• “Add”: XOR each element individually with no carry:
   x4 + x3 +      + x + 1
         +    x4  +     + x2  + x
          x3  + x2        + 1 
• “Multiply”: multiplying by xn is like shifting to the left. 
 
   x2 + x + 1
         ×            x + 1
   x2 + x + 1
         x3 + x2 + x
         x3               + 1

14



Spring 2012 EECS150 – Lec21-db3 Page 

Galois Fields - The theory behind LFSRs
• These polynomials form a 

Galois (finite) field if we take the 
results of this multiplication 
modulo a prime polynomial p(x).
– A prime polynomial is one that 

cannot be written as the product 
of two non-trivial polynomials 
q(x)r(x)

– Perform modulo operation by 
subtracting a (polynomial) 
multiple of p(x) from the result.  
If the multiple is 1, this 
corresponds to XOR-ing the 
result with p(x).

• For any degree, there exists at 
least one prime polynomial.

• With it we can form GF(2n)

• Additionally, …
• Every Galois field has a primitive 

element, α, such that all non-zero 
elements of the field can be 
expressed as a power of α.  By 
raising α to powers (modulo p(x)), 
all non-zero field elements can be 
formed.

• Certain choices of p(x) make the 
simple polynomial x the primitive 
element.  These polynomials are 
called primitive, and one exists for 
every degree.

• For example, x4 + x + 1 is primitive.  
So α = x is a primitive element and 
successive powers of α will 
generate all non-zero elements of 
GF(16).  Example on next slide.

15



Spring 2012 EECS150 – Lec21-db3 Page 

Galois Fields - The theory behind LFSRs
α0  =                        1
α1  =                 x
α2  =         x2

α3  = x3

α4  =                x  + 1
α5  =         x2 + x
α6  = x3 + x2

α7  = x3         + x  + 1
α8  =         x2        + 1
α9  = x3         + x
α10 =         x2 + x  + 1
α11 = x3 + x2 + x 

α12 = x3 + x2 + x  + 1
α13 = x3 + x2        + 1
α14 = x3                + 1
α15 =                       1

• Note this pattern of coefficients 
matches the bits from our 4-bit 
LFSR example.

• In general finding primitive 
polynomials is difficult.  Most people 
just look them up in a table, such 
as:

α4  = x4 mod x4 + x + 1
     = x4 xor x4 + x + 1
      = x + 1

16



Spring 2012 EECS150 – Lec21-db3 Page 

Primitive Polynomials
x2 + x +1
x3 + x +1
x4 + x +1
x5 + x2 +1
x6 + x +1
x7 + x3 +1
x8 + x4 + x3 + x2 +1
x9 + x4 +1
x10 + x3 +1
x11 + x2 +1

x12 + x6 + x4 + x +1
x13 + x4 + x3 + x +1
x14 + x10 + x6 + x +1
x15 + x +1
x16 + x12 + x3 + x +1
x17 + x3 + 1
x18 + x7 + 1
x19 + x5 + x2 + x+ 1
x20 + x3 + 1
x21 + x2 + 1

x22 + x +1
x23 + x5 +1
x24 + x7 + x2 + x +1
x25 + x3 +1
x26 + x6 + x2 + x +1
x27 + x5 + x2 + x +1
x28 + x3 + 1
x29 + x +1
x30 + x6 + x4 + x +1
x31 + x3 + 1
x32 + x7 + x6 + x2 +1

   Galois Field               Hardware
Multiplication by x       ⇔ shift left
Taking the result mod  p(x)  ⇔ XOR-ing with the coefficients of p(x)
      when the most significant coefficient is 1.
Obtaining all 2n-1 non-zero ⇔ Shifting and XOR-ing 2n-1 times.
elements by evaluating xk

for k = 1, …, 2n-1 
17



Spring 2012 EECS150 – Lec21-db3 Page 

Building an LFSR from a Primitive Polynomial
• For k-bit LFSR number the flip-flops with FF1 on the right.
• The feedback path comes from the Q output of the leftmost FF.
• Find the primitive polynomial of the form xk + … + 1.
• The x0 = 1 term corresponds to connecting the feedback directly to the D input 

of FF 1.
• Each term of the form xn corresponds to connecting an xor between FF n and n

+1.
• 4-bit example, uses x4 + x + 1

–  x4 ⇔ FF4’s Q output
–  x ⇔ xor between FF1 and FF2
–  1 ⇔ FF1’s D input

• To build an 8-bit LFSR, use the primitive polynomial x8 + x4 + x3 + x2 + 1 and 
connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.

18



Spring 2012 EECS150 – Lec21-db3 Page 

Error Correction with LFSRs

19



Spring 2012 EECS150 – Lec21-db3 Page 

Error Correction with LFSRs
• XOR Q4 with incoming bit sequence. Now values of shift-register don’t follow a 

fixed pattern.  Dependent on input sequence.
• Look at the value of the register after 15 cycles: “1010”
• Note the length of the input sequence is 24-1 = 15 (same as the number of 

different nonzero patters for the original LFSR)
• Binary message occupies only 11 bits, the remaining 4 bits are “0000”.

– They would be replaced by the final result of our LFSR: “1010”
– If we run the sequence back through the LFSR with the replaced bits, we would get 

“0000” for the final result.
– 4 parity bits “neutralize” the sequence with respect to the LFSR.
  1 1 0 0 1 0 0 0 1 1 1   0 0 0 0   ⇒  1 0 1 0
  1 1 0 0 1 0 0 0 1 1 1   1 0 1 0   ⇒  0 0 0 0

• If parity bits not all zero, an error occurred in transmission.
• If number of parity bits = log total number of bits, then single bit errors can be 

corrected.
• Using more parity bits allows more errors to be detected.
• Ethernet uses 32 parity bits per frame (packet) with 16-bit LFSR.

20


