EECS150 - Digital Design
 Lecture 21 - Design Blocks

April 3, 2012
John Wawrzynek

Fixed Shifters / Rotators

- "fixed" shifters "hardwire" the shift amount into the circuit.
- Ex: verilog: $X>2$
- (right shift X by 2 places)
- Fixed shift/rotator is nothing but wires!

So what?

Rotate

Arithmetic Shift

Variable Shifters / Rotators

- Example: $X \gg S$, where S is unknown when we synthesize the circuit.
- Uses: shift instruction in processors (ARM includes a shift on every instruction), floating-point arithmetic, division/multiplication by powers of 2, etc.
- One way to build this is a simple shift-register:
a) Load word, b) shift enable for S cycles, c) read word.

- Worst case delay $O(N)$, not good for processor design.
- Can we do it in $O(\log N)$ time and fit it in one cycle?

Log Shifter / Rotator

- $\log (N)$ stages, each shifts (or not) by a power of 2 places,

LUT Mapping of Log shifter

Efficient with 2 to1 multiplexors, for instance, 3LUTs.
Virtex6 has 6LUTs. Naturally makes 4 to1 muxes:

Final stage uses F7 mux

"Improved" Shifter / Rotator

- How about this approach? Could it lead to even less delay?

- What is the delay of these big muxes?
- Look a transistor-level implementation?

Barrel Shifter

Connection Matrix

Generally useful structure:

- N^{2} control points.
- What other interesting functions can it do?

Cross-bar Switch

Nlog(N) control signals.

Supports all interesting permutations

- All one-to-one and one-to-many connections.

Commonly used in communication hardware (switches, routers).

Linear Feedback Shift Registers (LFSRs)

- These are n-bit counters exhibiting pseudo-random behavior.
- Built from simple shift-registers with a small number of xor gates.
- Used for:
- random number generation
- counters
- error checking and correction
- Advantages:
- very little hardware
- high speed operation
- Example 4-bit LFSR:

4-bit LFSR

0001 0010

- Circuit counts through $2^{4}-1$ different non-zero bit patterns.
- Leftmost bit decides whether the " 10011 " xor pattern is used to compute the next value or if the register just shifts left.
- Can build a similar circuit with any number of FFs, may need more xor gates.
- In general, with n flip-flops, $2^{n}-1$ different non-zero bit patterns.

0	0	0	1	0	1000
0	0	0	0	0	

0	0	0	1	0	1000
xor	0	0	0	0	0
	0	011			

0000110
xor 0 0 0 0 0 0 $0 \quad 1100$

0	1	0	0	0

xor 00000000101
路

xor 0000001110

	1111			
0	0	1	1	0
0				

xor 00000001101
Q4 Q3 Q2 Q1

- (Intuitively, this is a counter that wraps around many times and in a | 0 | 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | | | | | |

xor	1	0	0	1	1
	0	1	0	1	1

Applications of LFSRs

- Performance:
- In general, xors are only ever 2input and never connect in series.
- Therefore the minimum clock period for these circuits is:
$\mathrm{T}>\mathrm{T}_{\text {2-input-xor }}+$ clock overhead
- Very little latency, and independent of n !
- This can be used as a fast counter, if the particular sequence of count values is not important.
- Example: micro-code micro-pc
- Can be used as a random number generator.
- Sequence is a pseudorandom sequence:
- numbers appear in a random sequence
- repeats every $2^{\mathrm{n}}-1$ patterns
- Random numbers useful in:
- computer graphics
- cryptography
- automatic testing
- Used for error detection and correction
- CRC (cyclic redundancy codes)
- ethernet uses them

Galois Fields - the theory behind LFSRs

- LFSR circuits performs multiplication on a field.
- A field is defined as a set with the following:
- two operations defined on it:
- "addition" and "multiplication"
- closed under these operations
- associative and distributive laws hold
- additive and multiplicative identity elements
- additive inverse for every element
- multiplicative inverse for every non-zero element
- Example fields:
- set of rational numbers
- set of real numbers
- set of integers is not a field (why?)
- Finite fields are called Galois fields.
- Example:
- Binary numbers 0,1 with XOR as "addition" and AND as "multiplication".
- Called GF(2).

Galois Fields - The theory behind LFSRs

- Consider polynomials whose coefficients come from GF(2).
- Each term of the form x^{n} is either present or absent.
- Examples: $0,1, x, x^{2}$, and $x^{7}+x^{6}+1$

$$
=1 \cdot x^{7}+1 \cdot x^{6}+0 \cdot x^{5}+0 \cdot x^{4}+0 \cdot x^{3}+0 \cdot x^{2}+0 \cdot x^{1}+1 \cdot x^{0}
$$

- With addition and multiplication these form a field:
- "Add": XOR each element individually with no carry:

$$
\begin{array}{r}
\\
x^{4}+x^{3}+\quad+x+1 \\
+\quad x^{4}+\quad+x^{2}+x \\
\hline
\end{array}
$$

- "Multiply": multiplying by x^{n} is like shifting to the left.

$$
\begin{array}{rr}
& x^{2}+x+1 \\
\times & x+1 \\
\hline & x^{2}+x+1 \\
\frac{x^{3}+x^{2}+x}{x^{3}} & +1
\end{array}
$$

Galois Fields - The theory behind LFSRs

- These polynomials form a Galois (finite) field if we take the results of this multiplication modulo a prime polynomial $p(x)$.
- A prime polynomial is one that cannot be written as the product of two non-trivial polynomials $q(x) r(x)$
- Perform modulo operation by subtracting a (polynomial) multiple of $p(x)$ from the result. If the multiple is 1 , this corresponds to XOR-ing the result with $p(x)$.
- For any degree, there exists at least one prime polynomial.
- With it we can form $G F\left(2^{n}\right)$
- Additionally, ...
- Every Galois field has a primitive element, α, such that all non-zero elements of the field can be expressed as a power of α. By raising α to powers (modulo $p(x)$), all non-zero field elements can be formed.
- Certain choices of $p(x)$ make the simple polynomial x the primitive element. These polynomials are called primitive, and one exists for every degree.
- For example, $x^{4}+x+1$ is primitive. So $\alpha=x$ is a primitive element and successive powers of α will generate all non-zero elements of GF(16). Example on next slide.

Galois Fields - The theory behind LFSRs

$$
\begin{aligned}
& \alpha^{0}=\quad 1 \\
& \alpha^{l}=\quad x \\
& \alpha^{2}=x^{2} \\
& \alpha^{3}=x^{3} \\
& \alpha^{4}=\quad x+1 \\
& \alpha^{5}=x^{2}+x \\
& \alpha^{6}=x^{3}+x^{2} \\
& \alpha^{7}=x^{3} \quad+x+1 \\
& \alpha^{8}=x^{2}+1 \\
& \alpha^{9}=x^{3} \quad+x \\
& \alpha^{10}=x^{2}+x+1 \\
& \alpha^{l l}=x^{3}+x^{2}+x \\
& \alpha^{12}=x^{3}+x^{2}+x+1 \\
& \alpha^{13}=x^{3}+x^{2} \quad+1 \\
& \alpha^{14}=x^{3} \quad+1 \\
& \alpha^{15}= \\
& 1 \\
& x \\
& x^{2} \\
& +x
\end{aligned}
$$

Primitive Polynomials

$$
\begin{aligned}
& x^{2}+x+1 \\
& x^{3}+x+1 \\
& x^{4}+x+1 \\
& x^{5}+x^{2}+1 \\
& x^{6}+x+1 \\
& x^{7}+x^{3}+1 \\
& x^{8}+x^{4}+x^{3}+x^{2}+1 \\
& x^{9}+x^{4}+1 \\
& x^{10}+x^{3}+1 \\
& x^{11}+x^{2}+1
\end{aligned}
$$

$$
\begin{aligned}
& x^{12}+x^{6}+x^{4}+x+1 \\
& x^{13}+x^{4}+x^{3}+x+1 \\
& x^{14}+x^{10}+x^{6}+x+1 \\
& x^{15}+x+1 \\
& x^{16}+x^{12}+x^{3}+x+1 \\
& x^{17}+x^{3}+1 \\
& x^{18}+x^{7}+1 \\
& x^{19}+x^{5}+x^{2}+x+1 \\
& x^{20}+x^{3}+1 \\
& x^{21}+x^{2}+1
\end{aligned}
$$

$$
\begin{aligned}
& x^{22}+x+1 \\
& x^{23}+x^{5}+1 \\
& x^{24}+x^{7}+x^{2}+x+1 \\
& x^{25}+x^{3}+1 \\
& x^{26}+x^{6}+x^{2}+x+1 \\
& x^{27}+x^{5}+x^{2}+x+1 \\
& x^{28}+x^{3}+1 \\
& x^{29}+x+1 \\
& x^{30}+x^{6}+x^{4}+x+1 \\
& x^{31}+x^{3}+1 \\
& x^{32}+x^{7}+x^{6}+x^{2}+1
\end{aligned}
$$

Galois Field

Multiplication by x
Taking the result mod $p(x) \Leftrightarrow$ XOR-ing with the coefficients of $p(x)$ when the most significant coefficient is 1.
Obtaining all $2^{n}-1$ non-zero $\Leftrightarrow \quad$ Shifting and XOR-ing $2^{n}-1$ times. elements by evaluating x^{k} for $k=1, \ldots, 2^{n}-1$

Building an LFSR from a Primitive Polynomial

- For k-bit LFSR number the flip-flops with FF1 on the right.
- The feedback path comes from the Q output of the leftmost FF.
- Find the primitive polynomial of the form $x^{k}+\ldots+1$.
- The $x^{0}=1$ term corresponds to connecting the feedback directly to the D input of FF 1.
- Each term of the form x^{n} corresponds to connecting an xor between FF n and n +1 .
- 4-bit example, uses $x^{4}+x+1$
$-\quad x^{4} \Leftrightarrow$ FF4's Q output
$-\quad x \Leftrightarrow$ xor between FF1 and FF2

$-\quad 1 \Leftrightarrow$ FF1's D input
- To build an 8-bit LFSR, use the primitive polynomial $x^{8}+x^{4}+x^{3}+x^{2}+1$ and connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.

Error Correction with LFSRs

11 message bits 4 check bits

Error Correction with LFSRs

- XOR Q4 with incoming bit sequence. Now values of shift-register don't follow a fixed pattern. Dependent on input sequence.
- Look at the value of the register after 15 cycles: "1010"
- Note the length of the input sequence is $2^{4}-1=15$ (same as the number of different nonzero patters for the original LFSR)
- Binary message occupies only 11 bits, the remaining 4 bits are " 0000 ".
- They would be replaced by the final result of our LFSR: "1010"
- If we run the sequence back through the LFSR with the replaced bits, we would get " 0000 " for the final result.
- 4 parity bits "neutralize" the sequence with respect to the LFSR.

$$
\begin{aligned}
& 11001000111 \quad 0000 \Rightarrow 1010 \\
& 1100100011110010 \Rightarrow 0000
\end{aligned}
$$

- If parity bits not all zero, an error occurred in transmission.
- If number of parity bits = log total number of bits, then single bit errors can be corrected.
- Using more parity bits allows more errors to be detected.
- Ethernet uses 32 parity bits per frame (packet) with 16-bit LFSR.

