
Spring 2012 EECS150 - Lec23-hdl2 Page

EECS150 - Digital Design
Lecture 23 - High-Level Design

(Part 2)

April 10, 2012
John Wawrzynek

1

Spring 2012 EECS150 - Lec23-hld2 Page

List Processor Example
• Design a circuit that forms the sum of all the 2's complements

integers stored in a linked-list structure starting at memory address 0:

• All integers and pointers are 8-bit. The link-list is stored in a memory
block with an 8-bit address port and 8-bit data port, as shown below.
The pointer from the last element in the list is 0.

I/Os:
– START resets to head of

list and starts addition
process.

– DONE signals completion
– R, Bus that holds the final

result

2

Spring 2012 EECS150 - Lec22-hld1 Page

5. Optimization, Architecture #3

• Performance:
– T > 23ns, F < 43Mhz

3

If (START==1) NEXT0, SUM0, NUMA1;
 repeat {
 SUMSUM + Memory[NUMA];
 NUMAMemory[NEXT] + 1, NEXTMemory[NEXT] ;
 } until (NEXT==0);
RSUM, DONE1;

Spring 2012 EECS150 - Lec22-hld1 Page

Resource Utilization Charts
• One way to visualize these (and other possible) optimizations is

through the use of a resource utilization charts.
• These are used in high-level design to help schedule operations on

shared resources.
• Resources are listed on the y-axis. Time (in cycles) on the x-axis.
• Example:
memory fetch A1 fetch A2 fetch A3

bus fetch A1 fetch A2 fetch A3

register-file read B1 read B2 read B3

ALU A1+B1 A2+B2 A3+B3

 cycle 1 2 3 4 5 6 7

• Our list processor has two shared resources: memory and adder

4

Spring 2012 EECS150 - Lec22-hld1 Page

List Example Resource Scheduling
• Unoptimized solution: 1. SUMSUM + Memory[NEXT+1]; 2. NEXTMemory[NEXT];
 memory fetch x fetch next fetch x fetch next
 adder1 next+1 next+1
 adder2 sum sum
 1 2 1 2

• How about the other combination: add x register
 memory fetch x fetch next fetch x fetch next
 adder numa sum numa sum
 1. XMemory[NUMA], NUMANEXT+1;
 2. NEXTMemory[NEXT], SUMSUM+X;

• Does this work? If so, a very short clock period. Each cycle could have
independent fetch and add. T = max(Tmem, Tadd) instead of Tmem+ Tadd.

• Optimized solution: 1. SUMSUM + Memory[NUMA];
 2. NEXTMemory[NEXT], NUMAMemory[NEXT]+1;

 memory fetch x fetch next fetch x fetch next
 adder sum numa sum numa

5

Spring 2012 EECS150 - Lec22-hld1 Page

List Example Resource Scheduling
• Schedule one loop iteration followed by the next:

• How can we overlap iterations? next2 depends on next1.
– “slide” second iteration into first (4 cycles per result):

– or further:

 The repeating pattern is 4 cycles. Not exactly the pattern what we
were looking for. But does it work correctly?

Memory next1 x1 next2 x2
adder numa1 sum1 numa2 sum2

Memory next1 x1 next2 x2
adder numa1 sum1 numa2 sum2

Memory next1 next2 x1 x2 next3 next4 x3 x4

adder numa1 numa2 sum1 sum2 numa3 numa4 sum3 sum4

6

Spring 2012 EECS150 - Lec22-hld1 Page

List Example Resource Scheduling
• In this case, first spread out, then pack.

 1. XMemory[NUMA], NUMANEXT+1;
 2. NEXTMemory[NEXT], SUMSUM+X;
• Three different loop iterations active at once.
• Short cycle time (no dependencies within a cycle)
• full utilization (only 2 cycles per result)
• Initialization: x=0, numa=1, sum=0, next=memory[0]
• Extra control states (out of the loop)

– one to initialize next, clear sum, set numa
– one to finish off. 2 cycles after next==0.

Memory next1 x1
adder numa1 sum1

Memory next1 next2 x1 next3 x2 next4 x3
adder numa1 numa2 sum1 numa3 sum2 numa4 sum3

7

Spring 2012 EECS150 - Lec22-hld1 Page

5. Optimization, Architecture #4
• Datapath:

• Incremental cost:
– Addition of another register & mux, adder mux, and control.

• Performance: find max time of the four actions
 1. XMemory[NUMA], 0.5+1+10+1+0.5 = 13ns
 NUMANEXT+1; same for all ⇒ T>13ns, F<77MHz
 2. NEXTMemory[NEXT],
 SUMSUM+X;

LD_NUMA

8

Spring 2012 EECS150 - Lec23-hld2 Page

Other Optimizations
• Node alignment restriction:

– If the application of the list processor allows us to restrict the
placement of nodes in memory so that they are aligned on even
multiples of 2 bytes.

• NUMA addition can be eliminated.
• Controller supplies “0” for low-bit of memory address for NEXT, and

“1” for X.
– Furthermore, if we could use a memory with a 16-bit wide output,

then could fetch entire node in one cycle:

{NEXT, X}  Memory[NEXT], SUM  SUM + X;

⇒ execution time cut in half (half as many cycles)

9

Spring 2012 EECS150 - Lec23-hld2 Page

List Processor Conclusions
• Through careful optimization:

– clock frequency increased from 32MHz to 77MHz
– little cost increase.

• “Scheduling” was used to overlap and to maximize use of
resources.

• Questions:
– Consider the design process we went through:

– Could a computer program go from RTL description to circuits
automatically?

– Could a computer program derive the optimizations that we did?
– It is the goal of “High-Level Synthesis” to do similar transformations

and automatic mappings. “C-to-gates” compilers are an example.

10

Spring 2012 EECS150 - Lec23-hld2 Page

Modulo Scheduling
• Review of list processor scheduling:

• How did we know to “spread” out the schedule of one iteration to allow
efficient packing?

• The goal of modulo scheduling is to find the schedule for one characteristic
section of the computation. This is the part the control loops over.

• The entire schedule can then be derived, by repeating the characteristic
section or repeating it with some pieces omitted.

Memory next1 x1
adder numa1 sum1

Memory next1 next2 x1 next3 x2 next4 x3
adder numa1 numa2 sum1 numa3 sum2 numa4 sum3

11

Spring 2012 EECS150 - Lec23-hld2 Page

Modulo Scheduling Procedure
1. Calculate minimal length of characteristic section.

The maximum number of cycles that any one resource is used during
one iteration of the computation (assuming a resource can only be
used once per cycle).

2. Schedule one iteration of the computation on the
characteristic section wrapping around when necessary.
Each time the computation wraps around, decrease the
iteration subscript by one.

3. If iteration will not fit on minimal length section, increase
section by one and try again.

12

Spring 2012 EECS150 - Lec23-hld2 Page

nexti

Modulo Scheduling List Processor

• Finished schedule for 4 iterations:

nexti
NEXTMemory[NEXT]

numai
NUMANEXT+1

xi
XMemory[NUMA]

sumi
SUMSUM+X

• Assuming a single adder and a single ported
memory. Minimal schedule section length = 2.
Because both memory and adder are used for 2

cycles during one iteration.

Memory next1 next2 x1 next3 x2 next4 x3
adder numa1 numa2 sum1 numa3 sum2 numa4 sum3

numai

memory

adder

nexti
numai

memory

adder
Xi-1

nexti
numai

memory

adder
Xi-1

sumi-2

wrap-around,
decrease subscript

wrap-around,
decrease subscript

13

Spring 2012 EECS150 - Lec23-hld2 Page

Another Scheduling Example

Repeating schedule:

• Assume A, B, C, D, E stored in a dual port
memory.

• Assume a single adder.
• Minimal schedule section length = 3.

(Both memory and adder are used for 3
cycles during one iteration.)

A B C D

+ +

+

E
memory port 1

adder

load A

load B

E =

load C

load D store E

A + B C + D
memory port 2

load A
load B

E =

load C
load D store E
A + B C + D

load A
load B

E =

load C
load D store E
A + B C + D

load A
load B

E =

load C
load D store E
A + B C + D

Compute Graph
(one iteration of a
repeating calculation)

14

Spring 2012 EECS150 - Lec23-hld2 Page

Parallelism

• Example, Student final grade calculation:
 read mt1, mt2, mt3, project;
 grade = 0.2 × mt1 + 0.2 × mt2
 + 0.2 × mt3 + 0.4 × project;
 write grade;
• High performance hardware implementation:

As many operations as possible are done in parallel.

Parallelism is the act of doing more than one thing at a time.
Optimization in hardware design often involves using
parallelism to trade between cost and performance.

15

Spring 2012 EECS150 - Lec23-hld2 Page

Parallelism
• Is there a lower cost hardware implementation? Different

tree organization?
• Can factor out multiply by 0.2:

• How about sharing operators (multipliers and adders)?

16

Spring 2012 EECS150 - Lec23-hld2 Page

Time-Multiplexing
• Time multiplex single ALU for

all adds and multiplies:
• Attempts to minimize cost at

the expense of time.
– Need to add extra register,

muxes, control.

• If we adopt above approach, we can then consider the combinational
hardware circuit diagram as an abstract computation-graph.

• This time-multiplexing “covers” the computation graph by performing
the action of each node one at a time. (Sort of emulates it.)

Using other primitives, other
coverings are possible.

17

Spring 2012 EECS150 - Lec23-hld2 Page

HW versus SW
• This time-multiplexed ALU

approach is very similar to what
a conventional software version
would accomplish:

• CPUs time-multiplex function
units (ALUs, etc.)

add r2,r1,r3
add r2,r2,r4
mult r2,r4,r5
 . . .

• This model matches our tendency to express computation sequentially -
even though most computations naturally contain parallelism.

• Our programming languages also strengthen a sequential tendency.
• In hardware we have the ability to exploit problem parallelism - gives us a

“knob” to tradeoff performance & cost.
• Maybe best to express computations as abstract computations graphs

(rather than “programs”) - should lead to wider range of implementations.
• Note: modern processors spend much of their cost budget attempting to

restore execution parallelism: “super-scalar execution”.

18

Spring 2012 EECS150 - Lec23-hld2 Page

Exploiting Parallelism in HW
• Example: Video Codec

• Separate algorithm blocks implemented in separate HW blocks,
or HW is time-multiplexed.

• Entire operation is pipelined (with possible pipelining within the
blocks).

• “Loop unrolling used within blocks” or for entire computation.
19

Spring 2012 EECS150 - Lec23-hld2 Page

Optimizing Iterative Computations
• Hardware implementations of computations almost always

involves looping. Why?
• Is this true with software?
• Are there programs without loops?

– Maybe in “through away” code.
• We probably would not bother building such a thing into

hardware, would we?
– (FPGA may change this.)

• Fact is, our computations are closely tied to loops. Almost
all our HW includes some looping mechanism.

• What do we use looping for?

20

Spring 2012 EECS150 - Lec23-hld2 Page

Optimizing Iterative Computations
Types of loops:
1) Looping over input data (streaming):

– ex: MP3 player, video compressor, music synthesizer.
2) Looping over memory data

– ex: vector inner product, matrix multiply, list-processing
• 1) & 2) are really very similar. 1) is often turned into 2) by buffering up input

data, and processing “offline”. Even for “online” processing, buffers are used to
smooth out temporary rate mismatches.

3) CPUs are one big loop.
– Instruction fetch ⇒ execute ⇒ Instruction fetch ⇒ execute ⇒ …
– but change their personality with each iteration.

4) Others?

Loops offer opportunity for parallelism
 by executing more than one iteration at once,
 using parallel iteration execution &/or pipelining

21

Spring 2012 EECS150 - Lec23-hld2 Page

Pipelining Principle
• With looping usually we are less interested in the latency of one iteration

and more in the loop execution rate, or throughput.
• These can be different due to parallel iteration execution &/or pipelining.
• Pipelining review from CS61C:
 Analog to washing clothes:
 step 1: wash (20 minutes)
 step 2: dry (20 minutes)
 step 3: fold (20 minutes)
 60 minutes x 4 loads ⇒ 4 hours

 wash load1 load2 load3 load4
 dry load1 load2 load3 load4
 fold load1 load2 load3 load4
 20 min

 overlapped ⇒ 2 hours

22

Spring 2012 EECS150 - Lec23-hld2 Page

Pipelining

 wash load1 load2 load3 load4
 dry load1 load2 load3 load4
 fold load1 load2 load3 load4

• In the limit, as we increase the number of loads, the average time per
load approaches 20 minutes.

• The latency (time from start to end) for one load = 60 min.
• The throughput = 3 loads/hour

• The pipelined throughput ≈ # of pipe stages x un-pipelined throughput.

23

Spring 2012 EECS150 - Lec23-hld2 Page

Pipelining
• General principle:

• Cut the CL block into pieces (stages) and separate with registers:

 T’ = 4ns + 1ns + 4ns +1ns = 10ns
 F = 1/(4ns +1ns) = 200MHz

• CL block produces a new result every 5ns instead of every 9ns.

Assume T=8ns
TFF(setup +clk→q)=1ns
F = 1/9ns = 111MHz

Assume T1 = T2 = 4ns

24

Spring 2012 EECS150 - Lec23-hld2 Page

Limits on Pipelining
• Without FF overhead, throughput improvement α # of stages.
• After many stages are added FF overhead begins to dominate:

• Other limiters to effective pipelining:
– clock skew contributes to clock overhead
– unequal stages
– FFs dominate cost
– clock distribution power consumption
– feedback (dependencies between loop iterations)

FF “overhead”
is the setup and
clk to Q times.

25

Spring 2012 EECS150 - Lec23-hld2 Page

Pipelining Example
• F(x) = yi = a xi

2 + b xi + c

• x and y are assumed to be
“streams”

• Divide into 3 (nearly) equal stages.
• Insert pipeline registers at dashed

lines.

• Can we pipeline basic operators?

• Computation graph:

26

Spring 2012 EECS150 - Lec23-hld2 Page

Example: Pipelined Adder
• Possible, but usually not

done.
(arithmetic units can often be

made sufficiently fast
without internal pipelining)

27

Spring 2012 EECS150 - Lec23-hld2 Page

Pipelining Loops with Feedback

• Example 1: yi = yi-1 + xi + a

 unpipelined version:
 add1 xi+yi-1 xi+1+yi

 add2 yi yi+1

Can we “cut” the feedback and
overlap iterations?

Try putting a register after add1:
 add1 xi+yi-1 xi+1+yi

 add2 yi yi+1

“Loop carry dependency”

• Can’t overlap the
iterations because of
the dependency.

• The extra register
doesn’t help the
situation (actually
hurts).

• In general, can’t
pipeline feedback
loops.

28

Spring 2012 EECS150 - Lec23-hld2 Page

Pipelining Loops with Feedback

However, we can overlap the “non-
feedback” part of the iterations:

Add is associative and communitive.
Therefore we can reorder the
computation to shorten the delay
of the feedback path:

 yi = (yi-1 + xi) + a = (a + xi) + yi-1

 add1 xi+a xi+1+a xi+2+a

 add2 yi yi+1 yi+2

• Pipelining is limited to 2 stages.

“Loop carry dependency”

“Shorten” the
feedback path.

29

Spring 2012 EECS150 - Lec23-hld2 Page

Pipelining Loops with Feedback
• Example 2:
 yi = a yi-1 + xi + b

add1 xi+b xi+1+b xi+2+b
mult ayi-1 ayi ayi+1

add2 yi yi+1 yi+2

• Reorder to shorten the feedback
loop and try putting register after
multiply:

• Still need 2 cycles/iteration

30

Spring 2012 EECS150 - Lec23-hld2 Page

Pipelining Loops with Feedback
• Example 2:
 yi = a yi-1 + xi + b

add1 xi+b xi+1+b xi+2+b
mult ayi-1 ayi ayi+1

add2 yi yi+1 yi+2

• Once again, adding register doesn’t
help. Best solution is to overlap
non-feedback part with feedback
part.

• Therefore critical path includes a
multiply in series with add.

• Can overlap first add with multiply/
add operation.

• Only 1 cycle/iteration. Higher
performance solution (than 2 cycle
version).

• Alternative is to move register to
after multiple, but same critical path.

31

Spring 2012 EECS150 - Lec23-hld2 Page

“C-slow” Technique
• Another approach to increasing throughput in the presence of feedback:

try to fill in “holes” in the chart with another (independent) computation:

add1 xi+b xi+1+b xi+2+b
mult ayi-1 ayi ayi+1

add2 yi yi+1 yi+2

If we have a second similar computation, can interleave it with the first:

• Here the feedback depth=2 cycles (we say C=2).
• Each loop has throughput of Fclk/C. But the aggregate throughput is Fclk.
• With this technique we could pipeline even deeper, assuming we could

supply C independent streams.

F1x1 y1 = a1 y1
i-1 + x1

i + b1

F2x2 y2 = a2 y2
i-1 + x2

i + b2

Use muxes to direct each stream.
Time multiplex one piece of HW
for both stream.
 Each produces 1 result / 2 cycles.

32

Spring 2012 EECS150 - Lec23-hld2 Page

“C-slow” Technique
• Essentially this means we go

ahead and cut feedback path:

• This makes operations in
adjacent pipeline stages
independent and allows full
cycle for each:

• C computations (in this case
C=2) can use the pipeline
simultaneously.

• Must be independent.
• Input MUX interleaves input

streams.
• Each stream runs at half the

pipeline frequency.
• Pipeline achieves full

throughput.

add1 x+b x+b x+b x+b x+b x+b
mult ay ay ay ay ay ay
add2 y y y y y y

33

Multithreaded Processors use this.

Spring 2012 EECS150 - Lec23-hld2 Page

Beyond Pipelining - SIMD Parallelism
• An obvious way to exploit more parallelism from loops is to make multiple

instances of the loop execution data-path and run them in parallel, sharing the
some controller.

• For P instances, throughput improves by a factor of P.
• example: yi = f(xi)

•
• Assumes the next 4 x values available at once. The validity of this assumption

depends on the ratio of f repeat rate to input rate (or memory bandwidth).
• Cost α P. Usually, much higher than for pipelining. However, potentially

provides a high speedup. Often applied after pipelining.
• Limited, once again, by loop carry dependencies. Feedback translates to

dependencies between parallel data-paths.
• Vector processors use this technique.

f

yi

xi

f

yi+1

xi+1

f

yi+2

xi+2

f

yi+3

xi+3 Usually called SIMD
parallelism. Single
Instruction Multiple Data

34

Spring 2012 EECS150 - Lec23-hld2 Page

SIMD Parallelism with Feedback
• Example, from earlier:
 yi = a yi-1 + xi + b

• In this example end up with “carry ripple” situation.
• Could employ look-ahead / parallel-prefix optimization techniques to

speed up propagation.
• As with pipelining, this technique is most effective in the absence of a

loop carry dependence.
35

