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List Processor Example
• Design a circuit that forms the sum of all the 2's complements 

integers stored in a linked-list structure starting at memory address 0:

• All integers and pointers are 8-bit. The link-list is stored in a memory 
block with an 8-bit address port and 8-bit data port, as shown below. 
The pointer from the last element in the list is 0.

I/Os:
– START resets to head of 

list and starts addition 
process.

– DONE signals completion
– R, Bus that holds the final 

result
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5. Optimization, Architecture #3

• Performance:
– T > 23ns, F < 43Mhz
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If (START==1) NEXT0, SUM0, NUMA1;
    repeat {
        SUMSUM + Memory[NUMA];
        NUMAMemory[NEXT] + 1, NEXTMemory[NEXT] ;
        } until (NEXT==0); 
RSUM, DONE1;  
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Resource Utilization Charts
• One way to visualize these (and other possible) optimizations is 

through the use of a resource utilization charts.
• These are used in high-level design to help schedule operations on 

shared resources.
• Resources are listed on the y-axis.  Time (in cycles) on the x-axis.
• Example:
memory fetch A1 fetch A2 fetch A3

bus                fetch A1 fetch A2 fetch A3

register-file  read B1 read B2 read B3

ALU    A1+B1 A2+B2 A3+B3

  cycle     1     2     3     4     5     6     7

• Our list processor has two shared resources:  memory and adder
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List Example Resource Scheduling
• Unoptimized solution: 1. SUMSUM + Memory[NEXT+1];  2. NEXTMemory[NEXT];
  memory    fetch x         fetch next      fetch x         fetch next
  adder1   next+1    next+1
  adder2   sum    sum
        1  2     1  2

• How about the other combination: add x register
  memory  fetch x fetch next    fetch x    fetch next
  adder  numa sum      numa      sum
   1. XMemory[NUMA],  NUMANEXT+1;
   2. NEXTMemory[NEXT],  SUMSUM+X;

• Does this work?  If so, a very short clock period.  Each cycle could have 
independent fetch and add.  T = max(Tmem, Tadd) instead of Tmem+ Tadd.

• Optimized solution: 1. SUMSUM + Memory[NUMA];  
                2. NEXTMemory[NEXT],  NUMAMemory[NEXT]+1;

  memory             fetch x     fetch next    fetch x    fetch next
  adder  sum    numa      sum      numa
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List Example Resource Scheduling
• Schedule one loop iteration followed by the next:

• How can we overlap iterations?  next2 depends on next1.
– “slide” second iteration into first (4 cycles per result):

– or further:

 The repeating pattern is 4 cycles.  Not exactly the pattern what we 
were looking for.  But does it work correctly?

Memory   next1                           x1        next2                           x2 
adder              numa1                      sum1               numa2                      sum2 

Memory   next1                           x1           next2                           x2 
adder              numa1                      sum1   numa2                      sum2 

Memory   next1      next2         x1         x2          next3     next4          x3   x4

adder              numa1   numa2    sum1    sum2  numa3   numa4    sum3       sum4 
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List Example Resource Scheduling
• In this case, first spread out, then pack.

   1. XMemory[NUMA],  NUMANEXT+1;
   2. NEXTMemory[NEXT],  SUMSUM+X;
• Three different loop iterations active at once.
• Short cycle time (no dependencies within a cycle)
• full utilization (only 2 cycles per result)
• Initialization:  x=0, numa=1, sum=0, next=memory[0]
• Extra control states (out of the loop)

– one to initialize next, clear sum, set numa
– one to finish off.  2 cycles after next==0.

Memory   next1                                            x1 
adder              numa1                                       sum1

Memory   next1                        next2          x1        next3       x2         next4       x3 
adder              numa1                    numa2  sum1    numa3   sum2     numa4    sum3 
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5. Optimization, Architecture #4
• Datapath:

• Incremental cost:
– Addition of another register & mux, adder mux,  and control.

• Performance: find max time of the four actions
  1. XMemory[NUMA],   0.5+1+10+1+0.5 = 13ns 
      NUMANEXT+1; same for all ⇒ T>13ns, F<77MHz
  2. NEXTMemory[NEXT],  
      SUMSUM+X;

LD_NUMA
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Other Optimizations
• Node alignment restriction:

– If the application of the list processor allows us to restrict the 
placement of nodes in memory so that they are aligned on even 
multiples of 2 bytes.

• NUMA addition can be eliminated.
• Controller supplies “0” for low-bit of memory address for NEXT, and 

“1” for X.
– Furthermore, if we could use a memory with a 16-bit wide output, 

then could fetch entire node in one cycle:

{NEXT, X}  Memory[NEXT],  SUM  SUM + X;

⇒ execution time cut in half (half as many cycles)
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List Processor Conclusions
• Through careful optimization:

– clock frequency increased from 32MHz to 77MHz 
– little cost increase. 

• “Scheduling” was used to overlap and to maximize use of 
resources.

• Questions:
– Consider the design process we went through:

– Could a computer program go from RTL description to circuits 
automatically?

– Could a computer program derive the optimizations that we did?
– It is the goal of “High-Level Synthesis” to do similar transformations 

and automatic mappings.  “C-to-gates” compilers are an example.
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Modulo Scheduling
• Review of list processor scheduling:

• How did we know to “spread” out the schedule of one iteration to allow 
efficient packing?

• The goal of modulo scheduling is to find the schedule for one characteristic 
section of the computation.  This is the part the control loops over.

• The entire schedule can then be derived, by repeating the characteristic 
section or repeating it with some pieces omitted.

Memory   next1                                            x1 
adder              numa1                                       sum1

Memory   next1                        next2          x1        next3       x2         next4       x3 
adder              numa1                    numa2  sum1    numa3   sum2     numa4    sum3 
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Modulo Scheduling Procedure
1. Calculate minimal length of characteristic section.

The maximum number of cycles that any one resource is used during 
one iteration of the computation (assuming a resource can only be 
used once per cycle).

2. Schedule one iteration of the computation on the 
characteristic section wrapping around when necessary.  
Each time the computation wraps around, decrease the 
iteration subscript by one.

3. If iteration will not fit on minimal length section, increase 
section by one and try again.
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nexti

Modulo Scheduling List Processor

• Finished schedule for 4 iterations:

nexti
NEXTMemory[NEXT]

numai
NUMANEXT+1

xi
XMemory[NUMA]

sumi
SUMSUM+X

• Assuming a single adder and a single ported 
memory.  Minimal schedule section length = 2.  
Because both memory and adder are used for 2 

cycles during one iteration.

Memory   next1                        next2          x1        next3       x2         next4       x3 
adder              numa1                    numa2  sum1    numa3   sum2     numa4    sum3 

numai

memory

adder

nexti
numai

memory

adder
Xi-1

nexti
numai

memory

adder
Xi-1

sumi-2

wrap-around,
decrease subscript

wrap-around,
decrease subscript
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Another Scheduling Example

Repeating schedule:

• Assume A, B, C, D, E stored in a dual port 
memory.  

• Assume a single adder. 
• Minimal schedule section length = 3.  

(Both memory and adder are used for 3 
cycles during one iteration.)

A B C D

+ +

+

E
memory port 1

adder

load A

load B

E =

load C

load D store E

A + B C + D
memory port 2

load A
load B

E =

load C
load D store E
A + B C + D

load A
load B

E =

load C
load D store E
A + B C + D

load A
load B

E =

load C
load D store E
A + B C + D

Compute Graph
(one iteration of a 
repeating calculation)
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Parallelism 

• Example, Student final grade calculation:
  read mt1, mt2, mt3, project;
  grade = 0.2 × mt1 + 0.2 × mt2 
    + 0.2 × mt3 + 0.4 × project;
  write grade;
• High performance hardware implementation:

As many operations as possible are done in parallel.

Parallelism is the act of doing more than one thing at a time.
Optimization in hardware design often involves using 
parallelism to trade between cost and performance.
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Parallelism
• Is there a lower cost hardware implementation?  Different 

tree organization?
• Can factor out multiply by 0.2:

• How about sharing operators (multipliers and adders)?
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Time-Multiplexing
• Time multiplex single ALU for 

all adds and multiplies:
• Attempts to minimize cost at 

the expense of time.
– Need to add extra register, 

muxes, control.

• If we adopt above approach, we can then consider the combinational 
hardware circuit diagram as an abstract computation-graph.

• This time-multiplexing “covers” the computation graph by performing 
the action of each node one at a time.  (Sort of emulates it.)

Using other primitives, other
coverings are possible.
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HW versus SW
• This time-multiplexed ALU 

approach is very similar to what 
a conventional software version 
would accomplish:

• CPUs time-multiplex function 
units (ALUs, etc.)

add r2,r1,r3
add r2,r2,r4
mult r2,r4,r5
  .  .  .

• This model matches our tendency to express computation sequentially - 
even though most computations naturally contain parallelism.

• Our programming languages also strengthen a sequential tendency.
• In hardware we have the ability to exploit problem parallelism - gives us a 

“knob” to tradeoff performance & cost.
• Maybe best to express computations as abstract computations graphs 

(rather than “programs”) - should lead to wider range of implementations.
• Note: modern processors spend much of their cost budget attempting to 

restore execution parallelism: “super-scalar execution”.
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Exploiting Parallelism in HW
• Example: Video Codec

• Separate algorithm blocks implemented in separate HW blocks, 
or HW is time-multiplexed.  

• Entire operation is pipelined (with possible pipelining within the 
blocks).  

• “Loop unrolling used within blocks” or for entire computation.
19
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Optimizing Iterative Computations
• Hardware implementations of computations almost always 

involves looping.  Why?
• Is this true with software?
• Are there programs without loops?  

– Maybe in “through away” code.
• We probably would not bother building such a thing into 

hardware, would we?  
– (FPGA may change this.)

• Fact is, our computations are closely tied to loops.  Almost 
all our HW includes some looping mechanism.

• What do we use looping for?
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Optimizing Iterative Computations
Types of loops:
1) Looping over input data (streaming):

– ex: MP3 player, video compressor, music synthesizer.
2) Looping over memory data

– ex: vector inner product, matrix multiply, list-processing
• 1) & 2) are really very similar.  1) is often turned into 2) by buffering up input 

data, and processing “offline”.  Even for “online” processing, buffers are used to 
smooth out temporary rate mismatches.

3) CPUs are one big loop.
– Instruction fetch ⇒ execute ⇒ Instruction fetch ⇒ execute  ⇒ …
– but change their personality with each iteration.

4) Others?

Loops offer opportunity for parallelism
 by executing more than one iteration at once,
 using parallel iteration execution &/or pipelining
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Pipelining Principle
• With looping usually we are less interested in the latency of one iteration 

and more in the loop execution rate, or throughput.
• These can be different due to parallel iteration execution &/or pipelining.
• Pipelining review from CS61C:
 Analog to washing clothes:
   step 1: wash (20 minutes)
   step 2: dry (20 minutes)
   step 3: fold (20 minutes)
      60 minutes x 4 loads ⇒ 4 hours

  wash load1  load2  load3  load4
  dry            load1  load2  load3  load4
  fold           load1  load2  load3  load4
   20 min

       overlapped ⇒ 2 hours

22



Spring 2012 EECS150 - Lec23-hld2 Page 

Pipelining

  wash load1  load2  load3  load4
  dry            load1  load2  load3  load4
  fold           load1  load2  load3  load4

• In the limit, as we increase the number of loads, the average time per 
load approaches 20 minutes.

• The latency (time from start to end) for one load = 60 min.
• The throughput = 3 loads/hour

• The pipelined throughput ≈ # of pipe stages x un-pipelined throughput.
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Pipelining
• General principle:

• Cut the CL block into pieces (stages) and separate with registers:

  
  T’ = 4ns + 1ns + 4ns +1ns = 10ns
  F = 1/(4ns +1ns) = 200MHz

• CL block produces a new result every 5ns instead of every 9ns.

Assume T=8ns
TFF(setup +clk→q)=1ns
F = 1/9ns = 111MHz

Assume T1 = T2 = 4ns
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Limits on Pipelining
• Without FF overhead, throughput improvement α # of stages.
• After many stages are added FF overhead begins to dominate:

• Other limiters to effective pipelining:
– clock skew contributes to clock overhead
– unequal stages
– FFs dominate cost
– clock distribution power consumption
– feedback (dependencies between loop iterations)

FF “overhead”
is the setup and 
clk to Q times.
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Pipelining Example
• F(x) = yi  = a xi

2 + b xi + c

• x and y are assumed to be 
“streams”

• Divide into 3 (nearly) equal stages.
• Insert pipeline registers at dashed 

lines.

• Can we pipeline basic operators?

• Computation graph:

26
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Example: Pipelined Adder
• Possible, but usually not 

done.
(arithmetic units can often be 

made sufficiently fast 
without internal pipelining)
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Pipelining Loops with Feedback

• Example 1:  yi = yi-1 + xi + a
 
 unpipelined version:
 add1   xi+yi-1        xi+1+yi

 add2               yi                    yi+1 

Can we “cut” the feedback and 
overlap iterations?

Try putting a register after add1:
 add1   xi+yi-1           xi+1+yi

 add2               yi                          yi+1 

“Loop carry dependency”

• Can’t overlap the 
iterations because of 
the dependency.

• The extra register 
doesn’t help the 
situation (actually 
hurts).

• In general, can’t 
pipeline feedback 
loops.
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Pipelining Loops with Feedback

However, we can overlap the “non-
feedback” part of the iterations:

Add is associative and communitive.  
Therefore we can reorder the 
computation to shorten the delay 
of the feedback path:

 yi  =  (yi-1 + xi) + a  =  (a + xi) + yi-1

    add1    xi+a   xi+1+a   xi+2+a 

      add2              yi              yi+1       yi+2

• Pipelining is limited to 2 stages.

“Loop carry dependency”

“Shorten” the 
feedback path.
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Pipelining Loops with Feedback
• Example 2:
   yi = a yi-1 + xi + b

add1     xi+b                   xi+1+b                 xi+2+b
mult    ayi-1                   ayi                                 ayi+1

add2                         yi                       yi+1                              yi+2

• Reorder to shorten the feedback 
loop and try putting register after 
multiply:

• Still need 2 cycles/iteration
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Pipelining Loops with Feedback
• Example 2:
   yi = a yi-1 + xi + b

add1     xi+b      xi+1+b    xi+2+b
mult                ayi-1       ayi            ayi+1

add2                             yi         yi+1            yi+2

• Once again, adding register doesn’t 
help.  Best solution is to overlap 
non-feedback part with feedback 
part.

• Therefore critical path includes a 
multiply in series with add.

• Can overlap first add with multiply/
add operation.

• Only 1 cycle/iteration.  Higher 
performance solution (than 2 cycle 
version).

• Alternative is to move register to 
after multiple, but same critical path.
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“C-slow” Technique
• Another approach to increasing throughput in the presence of feedback: 

try to fill in “holes” in the chart with another (independent) computation:

add1     xi+b                   xi+1+b                 xi+2+b
mult    ayi-1                   ayi                                 ayi+1

add2                         yi                       yi+1                              yi+2

If we have a second similar computation, can interleave it with the first:

• Here the feedback depth=2 cycles (we say C=2).
• Each loop has throughput of Fclk/C.  But the aggregate throughput is Fclk.
• With this technique we could pipeline even deeper, assuming we could 

supply C independent streams.

F1x1 y1 = a1 y1
i-1 + x1

i + b1

F2x2 y2 = a2 y2
i-1 + x2

i + b2

Use muxes to direct each stream.
Time multiplex one piece of HW 
for both stream.
  Each produces 1 result / 2 cycles.
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“C-slow” Technique
• Essentially this means we go 

ahead and cut feedback path:

• This makes operations in 
adjacent pipeline stages 
independent and allows full 
cycle for each:

• C computations (in this case 
C=2) can use the pipeline 
simultaneously.  

• Must be independent.
• Input MUX interleaves input 

streams.  
• Each stream runs at half the 

pipeline frequency.
• Pipeline achieves full 

throughput.

add1     x+b       x+b       x+b      x+b       x+b       x+b
mult    ay         ay              ay        ay         ay              ay
add2          y           y                y          y           y                 y 

33

Multithreaded Processors use this.
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Beyond Pipelining - SIMD Parallelism
• An obvious way to exploit more parallelism from loops is to make multiple 

instances of the loop execution data-path and run them in parallel, sharing the 
some controller.

• For P instances, throughput improves by a factor of P.
• example:  yi = f(xi)

•  
• Assumes the next 4 x values available at once.  The validity of this assumption 

depends on the ratio of f repeat rate to input rate (or memory bandwidth).
• Cost α P.  Usually, much higher than for pipelining.  However, potentially 

provides a high speedup.  Often applied after pipelining.
• Limited, once again, by loop carry dependencies.  Feedback translates to 

dependencies between parallel data-paths.
• Vector processors use this technique.

f

yi

xi

f

yi+1

xi+1

f

yi+2

xi+2

f

yi+3

xi+3 Usually called SIMD 
parallelism.  Single 
Instruction Multiple Data
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SIMD Parallelism with Feedback 
• Example, from earlier:
  yi = a yi-1 + xi + b

• In this example end up with “carry ripple” situation.
• Could employ look-ahead / parallel-prefix optimization techniques to 

speed up propagation.
• As with pipelining, this technique is most effective in the absence of a 

loop carry dependence.
35


