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Parallelism 

• Example, Student final grade calculation:
  read mt1, mt2, mt3, project;
  grade = 0.2 × mt1 + 0.2 × mt2 
    + 0.2 × mt3 + 0.4 × project;
  write grade;
• High performance hardware implementation:

As many operations as possible are done in parallel.

Parallelism is the act of doing more than one thing at a time.
Optimization in hardware design often involves using 
parallelism to trade between cost and performance.
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Optimizing Iterative Computations
Types of loops:
1) Looping over input data (streaming):

– ex: MP3 player, video compressor, music synthesizer.
2) Looping over memory data

– ex: vector inner product, matrix multiply, list-processing
• 1) & 2) are really very similar.  1) is often turned into 2) by buffering up input 

data, and processing “offline”.  Even for “online” processing, buffers are used to 
smooth out temporary rate mismatches.

3) CPUs are one big loop.
– Instruction fetch ⇒ execute ⇒ Instruction fetch ⇒ execute  ⇒ …
– but change their personality with each iteration.

4) Others?

Loops offer opportunity for parallelism
 by executing more than one iteration at once,
 using parallel iteration execution &/or pipelining

3



Spring 2012 EECS150 - Lec23-hld2 Page 

Pipelining Principle
• With looping usually we are less interested in the latency of one iteration 

and more in the loop execution rate, or throughput.
• These can be different due to parallel iteration execution &/or pipelining.
• Pipelining review from CS61C:
 Analog to washing clothes:
   step 1: wash (20 minutes)
   step 2: dry (20 minutes)
   step 3: fold (20 minutes)
      60 minutes x 4 loads ⇒ 4 hours

  wash load1  load2  load3  load4
  dry            load1  load2  load3  load4
  fold           load1  load2  load3  load4
   20 min

       overlapped ⇒ 2 hours
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Limits on Pipelining
• Without FF overhead, throughput improvement α # of stages.
• After many stages are added FF overhead begins to dominate:

• Other limiters to effective pipelining:
– clock skew contributes to clock overhead
– unequal stages
– FFs dominate cost
– clock distribution power consumption
– feedback (dependencies between loop iterations)

FF “overhead”
is the setup and 
clk to Q times.
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Pipelining Example
• F(x) = yi  = a xi

2 + b xi + c

• x and y are assumed to be 
“streams”

• Divide into 3 (nearly) equal stages.
• Insert pipeline registers at dashed 

lines.

• Can we pipeline basic operators?

• Computation graph:
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Example: Pipelined Adder
• Possible, but usually not 

done.
(arithmetic units can often be 

made sufficiently fast 
without internal pipelining)
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Pipelining Loops with Feedback

• Example 1:  yi = yi-1 + xi + a
 
 unpipelined version:
 add1   xi+yi-1        xi+1+yi

 add2               yi                    yi+1 

Can we “cut” the feedback and 
overlap iterations?

Try putting a register after add1:
 add1   xi+yi-1           xi+1+yi

 add2               yi                          yi+1 

“Loop carry dependency”

• Can’t overlap the 
iterations because of 
the dependency.

• The extra register 
doesn’t help the 
situation (actually 
hurts).

• In general, can’t 
pipeline feedback 
loops.
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Pipelining Loops with Feedback

However, we can overlap the “non-
feedback” part of the iterations:

Add is associative and communitive.  
Therefore we can reorder the 
computation to shorten the delay 
of the feedback path:

 yi  =  (yi-1 + xi) + a  =  (a + xi) + yi-1

    add1    xi+a   xi+1+a   xi+2+a 

      add2              yi              yi+1       yi+2

• Pipelining is limited to 2 stages.

“Loop carry dependency”

“Shorten” the 
feedback path.
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Pipelining Loops with Feedback
• Example 2:
   yi = a yi-1 + xi + b

add1     xi+b                   xi+1+b                 xi+2+b
mult    ayi-1                   ayi                                 ayi+1

add2                         yi                       yi+1                              yi+2

• Reorder to shorten the feedback 
loop and try putting register after 
multiply:

• Still need 2 cycles/iteration
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Pipelining Loops with Feedback
• Example 2:
   yi = a yi-1 + xi + b

add1     xi+b      xi+1+b    xi+2+b
mult                ayi-1       ayi            ayi+1

add2                             yi         yi+1            yi+2

• Once again, adding register doesn’t 
help.  Best solution is to overlap 
non-feedback part with feedback 
part.

• Therefore critical path includes a 
multiply in series with add.

• Can overlap first add with multiply/
add operation.

• Only 1 cycle/iteration.  Higher 
performance solution (than 2 cycle 
version).

• Alternative is to move register to 
after multiple, but same critical path.
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“C-slow” Technique
• Another approach to increasing throughput in the presence of feedback: 

try to fill in “holes” in the chart with another (independent) computation:

add1     xi+b                   xi+1+b                 xi+2+b
mult    ayi-1                   ayi                                 ayi+1

add2                         yi                       yi+1                              yi+2

If we have a second similar computation, can interleave it with the first:

• Here the feedback depth=2 cycles (we say C=2).
• Each loop has throughput of Fclk/C.  But the aggregate throughput is Fclk.
• With this technique we could pipeline even deeper, assuming we could 

supply C independent streams.

F1x1 y1 = a1 y1
i-1 + x1

i + b1

F2x2 y2 = a2 y2
i-1 + x2

i + b2

Use muxes to direct each stream.
Time multiplex one piece of HW 
for both stream.
  Each produces 1 result / 2 cycles.
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“C-slow” Technique
• Essentially this means we go 

ahead and cut feedback path:

• This makes operations in 
adjacent pipeline stages 
independent and allows full 
cycle for each:

• C computations (in this case 
C=2) can use the pipeline 
simultaneously.  

• Must be independent.
• Input MUX interleaves input 

streams.  
• Each stream runs at half the 

pipeline frequency.
• Pipeline achieves full 

throughput.

add1     x+b       x+b       x+b      x+b       x+b       x+b
mult    ay         ay              ay        ay         ay              ay
add2          y           y                y          y           y                 y 
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Beyond Pipelining - SIMD Parallelism
• An obvious way to exploit more parallelism from loops is to make multiple 

instances of the loop execution data-path and run them in parallel, sharing the 
some controller.

• For P instances, throughput improves by a factor of P.
• example:  yi = f(xi)

•  
• Assumes the next 4 x values available at once.  The validity of this assumption 

depends on the ratio of f repeat rate to input rate (or memory bandwidth).
• Cost α P.  Usually, much higher than for pipelining.  However, potentially 

provides a high speedup.  Often applied after pipelining.
• Limited, once again, by loop carry dependencies.  Feedback translates to 

dependencies between parallel data-paths.
• Vector processors use this technique.

f

yi

xi

f

yi+1

xi+1

f

yi+2

xi+2

f

yi+3

xi+3 Usually called SIMD 
parallelism.  Single 
Instruction Multiple Data
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SIMD Parallelism with Feedback 
• Example, from earlier:
  yi = a yi-1 + xi + b

• In this example end up with “carry ripple” situation.
• Could employ look-ahead / parallel-prefix optimization techniques to 

speed up propagation.
• As with pipelining, this technique is most effective in the absence of a 

loop carry dependence.
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Error Correction Codes

16



Spring 2012 EECS150 - Lec24-hld3 Page 

Error Correction Codes (ECC)
• Memory systems generate errors (accidentally flipped-bits)

– DRAMs store very little charge per bit
– “Soft” errors occur occasionally when cells are struck by alpha 

particles or other environmental upsets.
– Less frequently, “hard” errors can occur when chips permanently fail.

• Where “perfect” memory is required
– servers, spacecraft/military computers, …

• Memories are protected against failures with ECCs
• Extra bits are added to each data-word

– extra bits are used to detect and/or correct faults in the memory 
system

– in general, each possible data word value is mapped to a unique 
“code word”.  A fault changes a valid code word to an invalid one - 
which can be detected.
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Simple Error Detection Coding

• Each data value, before it is 
written to memory is “tagged” 
with an extra bit to force the 
stored word to have even parity:

• Each word, as it is read from 
memory is “checked” by finding 
its parity (including the parity 
bit).  

Parity Bit

b7b6b5b4b3b2b1b0p

+

b7b6b5b4b3b2b1b0p

+
c

• A non-zero parity indicates an error occurred:
– two errors (on different bits) is not detected (nor any even number of 

errors)
– odd numbers of errors are detected.
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Hamming Error Correcting Code
• Use more parity bits to pinpoint bit(s) 

in error, so they can be corrected.
• Example: Single error correction 

(SEC) on 4-bit data 
– use 3 parity bits, with 4-data bits 

results in 7-bit code word
– 3 parity bits sufficient to identify any 

one of 7 code word bits
– overlap the assignment of parity bits 

so that a single error in the 7-bit word 
can be corrected

• Procedure: group parity bits so they 
correspond to subsets of the 7 bits:
– p1 protects bits 1,3,5,7

– p2 protects bits 2,3,6,7

– p3 protects bits 4,5,6,7

 1    2    3    4    5    6    7 
 p1  p2   d1   p3   d2   d3  d4

 Bit position number
  001 = 110

  011 = 310

  101 = 510

  111 = 710

  010 = 210

  011 = 310

  110 = 610

  111 = 710

  100 = 410

  101 = 510

  110 = 610

  111 = 710

 

p1

p2

p3

Note: 
number bits 
from left to 
right.
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Hamming Code Example
• Example: c = c3c2c1= 101

– error in 4,5,6, or 7 (by c3=1)

– error in 1,3,5, or 7 (by c1=1)

– no error in 2, 3, 6, or 7 (by c2=0)

• Therefore error must be in bit 5.
• Note the check bits point to 5

• By our clever positioning and 
assignment of parity bits, the 
check bits always address the 
position of the error!

• c=000 indicates no error

 1    2    3    4    5    6    7 
 p1  p2   d1   p3   d2   d3  d4

– Note: parity bits occupy power-of-
two bit positions in code-word.

– On writing to memory:
• parity bits are assigned to force 

even parity over their respective 
groups.

– On reading from memory:
• check bits (c3,c2,c1) are generated 

by finding the parity of the group 
and its parity bit.  If an error 
occurred in a group, the 
corresponding check bit will be 1, 
if no error the check bit will be 0.

• check bits (c3,c2,c1) form the 
position of the bit in error. 

20



Spring 2012 EECS150 - Lec24-hld3 Page 

Hamming Error Correcting Code
• Overhead involved in single 

error correction code:
– let p be the total number of 

parity bits and d the number of 
data bits in a p + d bit word.

– If p error correction bits are to 
point to the error bit (p + d 
cases) plus indicate that no 
error exists (1 case), we need:

  2p >= p + d + 1,
 thus p >= log(p + d + 1)
 for large d, p approaches log(d)

• Adding on extra parity bit covering the 
entire word can provide double error 
detection

     1    2    3    4    5    6    7   8 
     p1  p2   d1   p3   d2   d3  d4   p4

• On reading the C bits are computed 
(as usual) plus the parity over the 
entire word, P:

 

 C=0  P=0, no error
 C!=0 P=1, correctable single error
 C!=0 P=0, a double error occurred

 C=0  P=1, an error occurred in p4 bit
Typical modern codes in DRAM memory systems:
 64-bit data blocks (8 bytes) with 72-bit code words (9 bytes), 
             results in SEC, DED.
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Error Correction with LFSRs
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Error Correction with LFSRs
• XOR Q4 with incoming bit sequence. Now values of shift-register don’t follow a 

fixed pattern.  Dependent on input sequence.
• Look at the value of the register after 15 cycles: “1010”
• Note the length of the input sequence is 24-1 = 15 (same as the number of 

different nonzero patters for the original LFSR)
• Binary message occupies only 11 bits, the remaining 4 bits are “0000”.

– They would be replaced by the final result of our LFSR: “1010”
– If we run the sequence back through the LFSR with the replaced bits, we would get 

“0000” for the final result.
– 4 parity bits “neutralize” the sequence with respect to the LFSR.
  1 1 0 0 1 0 0 0 1 1 1   0 0 0 0   ⇒  1 0 1 0
  1 1 0 0 1 0 0 0 1 1 1   1 0 1 0   ⇒  0 0 0 0

• If parity bits not all zero, an error occurred in transmission.
• If number of parity bits = log total number of bits, then single bit errors can be 

corrected.
• Using more parity bits allows more errors to be detected.
• Ethernet uses 32 parity bits per frame (packet) with 16-bit LFSR.
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