
Spring 2012 EECS150 - Lec24-hdl3 Page

EECS150 - Digital Design
Lecture 24 - High-Level Design

(Part 3) + ECC

April 12, 2012
John Wawrzynek

1

Spring 2012 EECS150 - Lec23-hld2 Page

Parallelism

• Example, Student final grade calculation:
 read mt1, mt2, mt3, project;
 grade = 0.2 × mt1 + 0.2 × mt2
 + 0.2 × mt3 + 0.4 × project;
 write grade;
• High performance hardware implementation:

As many operations as possible are done in parallel.

Parallelism is the act of doing more than one thing at a time.
Optimization in hardware design often involves using
parallelism to trade between cost and performance.

2

Spring 2012 EECS150 - Lec23-hld2 Page

Optimizing Iterative Computations
Types of loops:
1) Looping over input data (streaming):

– ex: MP3 player, video compressor, music synthesizer.
2) Looping over memory data

– ex: vector inner product, matrix multiply, list-processing
• 1) & 2) are really very similar. 1) is often turned into 2) by buffering up input

data, and processing “offline”. Even for “online” processing, buffers are used to
smooth out temporary rate mismatches.

3) CPUs are one big loop.
– Instruction fetch ⇒ execute ⇒ Instruction fetch ⇒ execute ⇒ …
– but change their personality with each iteration.

4) Others?

Loops offer opportunity for parallelism
 by executing more than one iteration at once,
 using parallel iteration execution &/or pipelining

3

Spring 2012 EECS150 - Lec23-hld2 Page

Pipelining Principle
• With looping usually we are less interested in the latency of one iteration

and more in the loop execution rate, or throughput.
• These can be different due to parallel iteration execution &/or pipelining.
• Pipelining review from CS61C:
 Analog to washing clothes:
 step 1: wash (20 minutes)
 step 2: dry (20 minutes)
 step 3: fold (20 minutes)
 60 minutes x 4 loads ⇒ 4 hours

 wash load1 load2 load3 load4
 dry load1 load2 load3 load4
 fold load1 load2 load3 load4
 20 min

 overlapped ⇒ 2 hours

4

Spring 2012 EECS150 - Lec23-hld2 Page

Limits on Pipelining
• Without FF overhead, throughput improvement α # of stages.
• After many stages are added FF overhead begins to dominate:

• Other limiters to effective pipelining:
– clock skew contributes to clock overhead
– unequal stages
– FFs dominate cost
– clock distribution power consumption
– feedback (dependencies between loop iterations)

FF “overhead”
is the setup and
clk to Q times.

5

Spring 2012 EECS150 - Lec23-hld2 Page

Pipelining Example
• F(x) = yi = a xi

2 + b xi + c

• x and y are assumed to be
“streams”

• Divide into 3 (nearly) equal stages.
• Insert pipeline registers at dashed

lines.

• Can we pipeline basic operators?

• Computation graph:

6

Spring 2012 EECS150 - Lec23-hld2 Page

Example: Pipelined Adder
• Possible, but usually not

done.
(arithmetic units can often be

made sufficiently fast
without internal pipelining)

7

Spring 2012 EECS150 - Lec23-hld2 Page

Pipelining Loops with Feedback

• Example 1: yi = yi-1 + xi + a

 unpipelined version:
 add1 xi+yi-1 xi+1+yi

 add2 yi yi+1

Can we “cut” the feedback and
overlap iterations?

Try putting a register after add1:
 add1 xi+yi-1 xi+1+yi

 add2 yi yi+1

“Loop carry dependency”

• Can’t overlap the
iterations because of
the dependency.

• The extra register
doesn’t help the
situation (actually
hurts).

• In general, can’t
pipeline feedback
loops.

8

Spring 2012 EECS150 - Lec23-hld2 Page

Pipelining Loops with Feedback

However, we can overlap the “non-
feedback” part of the iterations:

Add is associative and communitive.
Therefore we can reorder the
computation to shorten the delay
of the feedback path:

 yi = (yi-1 + xi) + a = (a + xi) + yi-1

 add1 xi+a xi+1+a xi+2+a

 add2 yi yi+1 yi+2

• Pipelining is limited to 2 stages.

“Loop carry dependency”

“Shorten” the
feedback path.

9

Spring 2012 EECS150 - Lec23-hld2 Page

Pipelining Loops with Feedback
• Example 2:
 yi = a yi-1 + xi + b

add1 xi+b xi+1+b xi+2+b
mult ayi-1 ayi ayi+1

add2 yi yi+1 yi+2

• Reorder to shorten the feedback
loop and try putting register after
multiply:

• Still need 2 cycles/iteration

10

Spring 2012 EECS150 - Lec23-hld2 Page

Pipelining Loops with Feedback
• Example 2:
 yi = a yi-1 + xi + b

add1 xi+b xi+1+b xi+2+b
mult ayi-1 ayi ayi+1

add2 yi yi+1 yi+2

• Once again, adding register doesn’t
help. Best solution is to overlap
non-feedback part with feedback
part.

• Therefore critical path includes a
multiply in series with add.

• Can overlap first add with multiply/
add operation.

• Only 1 cycle/iteration. Higher
performance solution (than 2 cycle
version).

• Alternative is to move register to
after multiple, but same critical path.

11

Spring 2012 EECS150 - Lec23-hld2 Page

“C-slow” Technique
• Another approach to increasing throughput in the presence of feedback:

try to fill in “holes” in the chart with another (independent) computation:

add1 xi+b xi+1+b xi+2+b
mult ayi-1 ayi ayi+1

add2 yi yi+1 yi+2

If we have a second similar computation, can interleave it with the first:

• Here the feedback depth=2 cycles (we say C=2).
• Each loop has throughput of Fclk/C. But the aggregate throughput is Fclk.
• With this technique we could pipeline even deeper, assuming we could

supply C independent streams.

F1x1 y1 = a1 y1
i-1 + x1

i + b1

F2x2 y2 = a2 y2
i-1 + x2

i + b2

Use muxes to direct each stream.
Time multiplex one piece of HW
for both stream.
 Each produces 1 result / 2 cycles.

12

Spring 2012 EECS150 - Lec23-hld2 Page

“C-slow” Technique
• Essentially this means we go

ahead and cut feedback path:

• This makes operations in
adjacent pipeline stages
independent and allows full
cycle for each:

• C computations (in this case
C=2) can use the pipeline
simultaneously.

• Must be independent.
• Input MUX interleaves input

streams.
• Each stream runs at half the

pipeline frequency.
• Pipeline achieves full

throughput.

add1 x+b x+b x+b x+b x+b x+b
mult ay ay ay ay ay ay
add2 y y y y y y

13

Multithreaded Processors use this.

Spring 2012 EECS150 - Lec23-hld2 Page

Beyond Pipelining - SIMD Parallelism
• An obvious way to exploit more parallelism from loops is to make multiple

instances of the loop execution data-path and run them in parallel, sharing the
some controller.

• For P instances, throughput improves by a factor of P.
• example: yi = f(xi)

•
• Assumes the next 4 x values available at once. The validity of this assumption

depends on the ratio of f repeat rate to input rate (or memory bandwidth).
• Cost α P. Usually, much higher than for pipelining. However, potentially

provides a high speedup. Often applied after pipelining.
• Limited, once again, by loop carry dependencies. Feedback translates to

dependencies between parallel data-paths.
• Vector processors use this technique.

f

yi

xi

f

yi+1

xi+1

f

yi+2

xi+2

f

yi+3

xi+3 Usually called SIMD
parallelism. Single
Instruction Multiple Data

14

Spring 2012 EECS150 - Lec23-hld2 Page

SIMD Parallelism with Feedback
• Example, from earlier:
 yi = a yi-1 + xi + b

• In this example end up with “carry ripple” situation.
• Could employ look-ahead / parallel-prefix optimization techniques to

speed up propagation.
• As with pipelining, this technique is most effective in the absence of a

loop carry dependence.
15

Spring 2012 EECS150 - Lec24-hld3 Page

Error Correction Codes

16

Spring 2012 EECS150 - Lec24-hld3 Page

Error Correction Codes (ECC)
• Memory systems generate errors (accidentally flipped-bits)

– DRAMs store very little charge per bit
– “Soft” errors occur occasionally when cells are struck by alpha

particles or other environmental upsets.
– Less frequently, “hard” errors can occur when chips permanently fail.

• Where “perfect” memory is required
– servers, spacecraft/military computers, …

• Memories are protected against failures with ECCs
• Extra bits are added to each data-word

– extra bits are used to detect and/or correct faults in the memory
system

– in general, each possible data word value is mapped to a unique
“code word”. A fault changes a valid code word to an invalid one -
which can be detected.

17

Spring 2012 EECS150 - Lec24-hld3 Page

Simple Error Detection Coding

• Each data value, before it is
written to memory is “tagged”
with an extra bit to force the
stored word to have even parity:

• Each word, as it is read from
memory is “checked” by finding
its parity (including the parity
bit).

Parity Bit

b7b6b5b4b3b2b1b0p

+

b7b6b5b4b3b2b1b0p

+
c

• A non-zero parity indicates an error occurred:
– two errors (on different bits) is not detected (nor any even number of

errors)
– odd numbers of errors are detected.

18

Spring 2012 EECS150 - Lec24-hld3 Page

Hamming Error Correcting Code
• Use more parity bits to pinpoint bit(s)

in error, so they can be corrected.
• Example: Single error correction

(SEC) on 4-bit data
– use 3 parity bits, with 4-data bits

results in 7-bit code word
– 3 parity bits sufficient to identify any

one of 7 code word bits
– overlap the assignment of parity bits

so that a single error in the 7-bit word
can be corrected

• Procedure: group parity bits so they
correspond to subsets of the 7 bits:
– p1 protects bits 1,3,5,7

– p2 protects bits 2,3,6,7

– p3 protects bits 4,5,6,7

 1 2 3 4 5 6 7
 p1 p2 d1 p3 d2 d3 d4

 Bit position number
 001 = 110

 011 = 310

 101 = 510

 111 = 710

 010 = 210

 011 = 310

 110 = 610

 111 = 710

 100 = 410

 101 = 510

 110 = 610

 111 = 710

p1

p2

p3

Note:
number bits
from left to
right.

19

Spring 2012 EECS150 - Lec24-hld3 Page

Hamming Code Example
• Example: c = c3c2c1= 101

– error in 4,5,6, or 7 (by c3=1)

– error in 1,3,5, or 7 (by c1=1)

– no error in 2, 3, 6, or 7 (by c2=0)

• Therefore error must be in bit 5.
• Note the check bits point to 5

• By our clever positioning and
assignment of parity bits, the
check bits always address the
position of the error!

• c=000 indicates no error

 1 2 3 4 5 6 7
 p1 p2 d1 p3 d2 d3 d4

– Note: parity bits occupy power-of-
two bit positions in code-word.

– On writing to memory:
• parity bits are assigned to force

even parity over their respective
groups.

– On reading from memory:
• check bits (c3,c2,c1) are generated

by finding the parity of the group
and its parity bit. If an error
occurred in a group, the
corresponding check bit will be 1,
if no error the check bit will be 0.

• check bits (c3,c2,c1) form the
position of the bit in error.

20

Spring 2012 EECS150 - Lec24-hld3 Page

Hamming Error Correcting Code
• Overhead involved in single

error correction code:
– let p be the total number of

parity bits and d the number of
data bits in a p + d bit word.

– If p error correction bits are to
point to the error bit (p + d
cases) plus indicate that no
error exists (1 case), we need:

 2p >= p + d + 1,
 thus p >= log(p + d + 1)
 for large d, p approaches log(d)

• Adding on extra parity bit covering the
entire word can provide double error
detection

 1 2 3 4 5 6 7 8
 p1 p2 d1 p3 d2 d3 d4 p4

• On reading the C bits are computed
(as usual) plus the parity over the
entire word, P:

 C=0 P=0, no error
 C!=0 P=1, correctable single error
 C!=0 P=0, a double error occurred

 C=0 P=1, an error occurred in p4 bit
Typical modern codes in DRAM memory systems:
 64-bit data blocks (8 bytes) with 72-bit code words (9 bytes),
 results in SEC, DED.

21

Spring 2012 EECS150 - Lec24-hld3 Page

Error Correction with LFSRs

22

Spring 2012 EECS150 - Lec24-hld3 Page

Error Correction with LFSRs
• XOR Q4 with incoming bit sequence. Now values of shift-register don’t follow a

fixed pattern. Dependent on input sequence.
• Look at the value of the register after 15 cycles: “1010”
• Note the length of the input sequence is 24-1 = 15 (same as the number of

different nonzero patters for the original LFSR)
• Binary message occupies only 11 bits, the remaining 4 bits are “0000”.

– They would be replaced by the final result of our LFSR: “1010”
– If we run the sequence back through the LFSR with the replaced bits, we would get

“0000” for the final result.
– 4 parity bits “neutralize” the sequence with respect to the LFSR.
 1 1 0 0 1 0 0 0 1 1 1 0 0 0 0 ⇒ 1 0 1 0
 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 ⇒ 0 0 0 0

• If parity bits not all zero, an error occurred in transmission.
• If number of parity bits = log total number of bits, then single bit errors can be

corrected.
• Using more parity bits allows more errors to be detected.
• Ethernet uses 32 parity bits per frame (packet) with 16-bit LFSR.

23

