CS 150 Digital Design

Lecture 24 – Power and Energy

2012-4-17

Professor John Wawrzynek today's lecture by John Lazzaro

TAs: Shaoyi Cheng, Daiwei Li, James Parker

www-inst.eecs.berkeley.edu/~cs150/

Sad fact: Computers turn electrical energy into heat. Computation is a byproduct.

Energy and Performance

Air or water carries heat away, or chip melts.

UC Regents Spring 2012 © UCB

The Joule: Unit of energy. Can also be expressed as Watt-Seconds. Burning 1 Watt for 100 seconds uses 100 Watt-Seconds of energy.

1A

This is how electric tea pots work ...

1 Joule heats 1 gram of water 0.24 degree C

> 1 Joule of Heat Energy per Second

> > -The Watt: Unit of power. The amount of energy burned in the resistor in 1 second.

1 Ohm Resistor

Watt

20 W rating: Maximum power the package is able to transfer to the air. Exceed rating and resistor burns.

CS 150 L24: Power and Energy

Cooling an iPod nano ...

Like resistor on last slide, iPod relies on passive transfer of heat from case to the air.

Why? Users don't want fans in their pocket ...

To stay "cool to the touch" via passive cooling, power budget of 5 W.

If iPod nano used 5W all the time, its battery would last 15 minutes ...

Powering an iPod nano (2005 edition)

1.2 W-hour battery: Can supply 1.2 watts of power for 1 hour.

1.2 W / 5 W = 15 minutes.

More W-hours require bigger battery and thus bigger "form factor" -it wouldn't be "nano" anymore :-).

Real specs for iPod nano : 14 hours for music, 4 hours for slide shows.

85 mW for music.300 mW for slides.

Finding the (2005) iPod nano CPU ...

A close relative ...

PP5020 soc

digital media management system-on-chip السبب

Two 80 MHz CPUs. One CPU used for audio, one for slides.

Low-power ARM roughly ImW per MHz ... variable clock, sleep modes.

85 mW system power realistic ...

CS 150 L24: Power and Energy

portalplayer[~]

Year-to-year: continuous improvements

iPod nano 2005 14 hours battery life (audio playback)

What changed ínsíde ?

iPod nano 2006 24 hours battery life (audio playback)

Source: ifixit.com

iPod nano 2005 a C-shaped PC board, with a battery in the "C" opening.

iPod nano 2006 battery lies on top of PC board.

How? Small IC packages, fewer parts

iPod nano 2006 —

iPod nano 2005

Source: arstechnica.com

CS 150 L24: Power and Energy

Aluminum permits thinner case ...

What's happened since 2006?

Source: ilounge.com

2010 Nano

0.74 ounces

2010 Shuffle

0.44 ounces

2010 Nano: "up to" 24 hours audio playback

2010 Shuffle: "up to" 15 hours audio playback

0.39 W Hr (33% of 2005 Nano)

Sources: iFixit, Apple

0.19 W Hr

UC Regents Spring 2012 © UCB

Desired screen size sets smartphone W x L Depth? : Thin body vs. battery life

	2007	2008	2009	2010	2011	Today
	iPhone	iPhone 3G	iPhone 3GS	iPhone 4	iPhone 4 (CDMA)	iPhone 4S
Battery	Li-Ion Polymer, 3.7V, 1170mAh	Li-Ion Polymer, 3.7V, 1150mAh	Li-Ion Polymer, 3.7V, 1220mAh	Li-Ion Polymer,	3.7V, 1420mAh	Li-lon Polymer, 3.7V, 1430mAh

22% gain in battery energy over 5 iterations

iPhone 4{,S} Battery L-shape Main Board

Metal frame acts as antenna

de:	2007	5.0
w.	iPhone	
Apps	Samsung	٦
Processor	S5L8900B01 ARM	
S	Core	
Process	90nm	
Geometry		
Die Size	8.5 x 8.5 mm	
Pin Count	424	
ARM Core	ARM9 (ARMv5)	
(Instruction Set)		
Clock Speed	~600MHz	
GPU	PowerVR MBX	
SDRAM	1Gb Mobile DDR	
	SISSESSO ARM BSOCB O719 ND4BZO2 CARE ISSPE - X6C3 ECC 45 60 716	

In 4 years:

2008

6.8x increase in transistor count

2009

2010

33% max clock speed increase

Attached DRAM: 128 MB -> 512 MB

6.8x transistors: Dual CPU and GPU, and to save energy.

CS 150 L24: Power and Energy

Notebooks ... as designed in 2006 ...

2006 Apple MacBook -- 5.2 lbs

12.8 in

Performance: Must be "close enough" to desktop performance ... most people no longer used a desktop (even in 2006).

Size and Weight. Ideal: paper notebook.

Heat: No longer "laptops" -- top may get "warm", bottom "hot". Quiet fans OK.

CS 150 L24: Power and Energy

Battery: Set by size and weight limits ...

46x more energy than iPod nano battery. And iPod lets you listen to music for 14 hours!

Almost full 1 inch depth. Width and height set by available space, weight. Battery rating: 55 W-hour.

At 2.3 GHz, Intel Core Duo CPU consumes 31 W running a heavy load - under 2 hours battery life! And, just for CPU!

At 1 GHz, CPU consumes 13 Watts. "Energy saver" option uses this mode ...

55 W-hour battery stores the energy of 1/2 a stick of dynamite.

If battery short-circuits, catastrophe is possible ...

MacBook Air ... design the laptop like an iPod

2011 Air: 11.8 in x 7.56 in x 0.68 in; 2.38 lbs

2006 Macbook: 12.8 in x 8.9 in x 1 in; 5.2 lbs

CS 150 L24: Power and Energy

Mainboard: fills about 25% of the laptop

35 W-h battery: 63% of 2006 MacBook's 55 W-h

2011 Air: 35 W-h battery, 5 hour battery life* 2012 iPad: 42.5 W-h battery, 10 hour battery life*

*For a content-consumption workload.

Battery-Life-Hour/W-h: 1.7x iPad advantage

iPad: iPhone++

iPad: iPhone++

A5X: 2 ARM Cortex9 Cores, expanded PowerVR GPU

🦦 Up to 64 GB Flash

Cellular front-end chips on separate board.

MacBook Air: Full PC

Thunderbolt I/O

C

Platform Controller CPU/GPU Hub

.................

to Up 4GB DRAM

2011 Air: \$999 -- 64 GB SSD, 2 GB RAM, x86 2012 iPad: \$699 -- 64 GB SSD, 1 GB RAM, ARM iPad 2012 CPU: iPhone 4S, with 2X GPU and RAM

"Content Creation vs. Content Consumption"

CS 150 L24: Power and Energy

UC Regents Spring 2012 © UCB

iPad 2011→2012, battery W-hours increased by 70%

Weight increase of 0.11 pound, thicker by 0.03 inches.

Increase needed to double display resolution while keeping battery life @ 10 hours.

The CPU is only part of power budget!

2004-era notebook running a full workload.

"Amdahl's Law for Power"

If our CPU took no power at all to run, that would only double battery life!

iPad 2011 \rightarrow 2012 power++ comes from this side.

CS 150 L24: Power and Er Data courtesy Mahesri et al., U of Illinois, 2004 UC Regents Spring 2012 © UCB

Servers: Total Cost of Ownership (TCO)

Reliability: running computers hot makes them fail more often.

Machine rooms are expensive. Removing heat dictates how many servers to put in a machine room.

Electric bill adds up! Powering the servers + powering the air conditioners is a big part of TCO.

2008+2009 laptops

Computations per W-h doubles every 1.6 years, going back to the first computer.

(Jonathan Koomey, Stanford).

Processors and Energy

Switching Energy: Fundamental Physics

(3) Fewer circuits. But more transistors can do more work.

(4) Reduce C per node. One reason why we scale processes.

CS 150 L24: Power and Energy

switching

energy?

Scaling switching energy per gate ...

Due to reducing V and C (length and width of Cs decrease, but plate distance gets smaller).

Recent slope more shallow because V is being scaled aggressively.

From: "Facing the Hot Chips Challenge Again", Bill Holt, Intel, presented at Hot Chips 17, 2005. CS 150 L24: Power and Energy UC Regents Spring 2012 © UCB

Second Factor: Leakage Currents

Even when a logic gate isn't switching, it burns power.

Isub: Even when this nFet is off, it passes an loff leakage current.

We can engineer any loff we like, but a lower loff also results in a lower lon, and thus a lower maximum clock speed.

Igate: Ideal capacitors have zero DC current. But modern transistor gates are a few atoms thick, and are not ideal.

Intel's 2006 processor designs, leakage vs switching power

A lot of work was done to get a ratio this good $\dots 50/50$ is common.

Bill Holt, Intel, Hot Chips 17 UC Regents Spring 2012 © UCB

Engineering "On" Current at 25 nm ...

Plot on a "Log" Scale to See "Off" Current

CS 150 L24: Power and Energy

From: Silicon Device Scaling to the Sub-10-nm Regime Meikei leong,^{1*} Bruce Doris,² Jakub Kedzierski,¹ Ken Rim,¹ Min Yang¹

Customize processes for product types ...

From: "Facing the Hot Chips Challenge Again", Bill Holt, Intel, presented at Hot Chips 17, 2005. CS 150 L24: Power and Energy UC Regents Spring 2012 © UCB

Transistor physics revisited ...

Away from the surface, the drain-induced charges remain even when the gate is off!

UC Regents Spring 2012 © UCB

CS 150 L24: Power and Energy

Solution concept: Fully-depleted channel

We limit the depth of the channel so that the gate voltage "wins" over the drain voltage.

Done as shown, 5 to 7 nm depth for a 20 nm transistor. Requires expensive wafers

"FD-SOI" -- Fully-Depleted Silicon-On-Insulator

Transistor channel is a raised fin. Gate controls channel from sides and top. Channel depth is fin width. 12-15nm for L=22nm.

Intel "Ivy Bridge" 22nm CPUs, first production parts

3-D Tri-Gates

Sandy Bridge

32nm planar

1.16B transistors

"Less than half the power @ same performance"

Ivy Bridge 22nm FinFet

1.4B transistors

Long-term possibility: New devices

Electrostatic mechanical relays at the nanoscale

Electromechanical Computing at 500°C with Silicon Carbide. Te-Hao Lee, Swarup Bhunia, Mehran Mehregany CS 150 L24: Power and Energy UC Regents Spring 2012 © UCB

Working inverter at 500 kHz ... for a while.

- + 10 fA leakage current
- + Works at 500 degrees C
- Fails after 1-10 days of 500 kHz toggles.
 Switching requires 6V V_{dd}
- Electromechanical Computing at 500°C with Silicon Carbide. Te-Hao Lee, Swarup Bhunia, Mehran Mehregany CS 150 L24: Power and Energy UC Regents Spring 2012 © UCB

Five low-power design techniques

H Parallelism and pipelining

H Power-down idle transistors

K Slow down non-critical paths

K Clock gating

H Thermal management

Design Technique #1 (of 5)

Trading Hardware for Power

via Parallelism and Pipelining ...

CS 150 L24: Power and Energy

Chandrakasan & Brodersen (UCB, 1992)

Architecture	Power (normalized)	
Simple	1	
Parallel	0.36	
Pipelined	0.39	
Pipelined-Parallel	0.2	

Architecture	Area (normalized)	
Simple	1	
Parallel	3.4	
Pipelined	1.3	
Pipelined-Parallel	3.7	

Architecture	Voltage	
Simple	5V	
Parallel	2.9V	
Pipelined	2.9V	
Pipelined-Parallel	2.0	

Pi	pel	lir	iec
	•		

CS 150 L24: Power and Energy

Minimizing Power Consumption in CMOS Circuits

Anantha P. Chandrakasan Robert W. Brodersen **Regents Spring 2012** © UCB

Multiple Cores for Low Power

Trade hardware for power, on a large scale ...

Cell: The PS3 chip

CS 150 L24: Power and Energy

Cell (PS3 Chip): 1 CPU + 8 "SPUs"

CS 150 L24: Power and Energy

One Synergistic Processing Unit (SPU)

SPU issues 2 inst/cycle (in order) to 7 execution units 256 KB Local Store, 128 128-bit Registers SPU fills Local Store using DMA to DRAM and network

A "Schmoo" plot for a Cell SPU ...

Clock speed alone doesn't help E/op ...

But, lowering clock frequency while keeping voltage constant spreads the same amount of work over a longer time, so chip stays cooler ...

 $\mathbf{E}_{0\to 1} = \frac{1}{2} \mathbf{C} \mathbf{V}_{dd}^2 \mathbf{E}_{1\to 0} = \frac{1}{2} \mathbf{C} \mathbf{V}_{dd}^2$

49 C 50C 50C 51C 52C 53C 54C 55C 56C 57C 59C 61C 58C 60C 63 C 61C 1.3 4W5W 7W7W 8W 8W 9W 4W 6W 6W 7W 9W 10W 10W 10W 11W 39 C 39 C 40C 41C 42 C 42 C 43C 44C 45C 45C 46C 47C 47C 48C 49C 1.2 3W 2W 3W 4W 4W 4W 5W 5W 5W 5W 6W 6W 7 W 33 C 35C 38C 32 C 33C 35C 36C 36C 37C 37C 38C 39C 39C 1.1 4W 2W2W 3W 3W 3W 3W 4W 4W 4W 4W 28C 29C 29C 30C 30C 30C 31C 31C 31C 32C 28C 1 2W2W 2W 2W2W3W 3W 3W 3W 3W 26C 26C 26C 27C 27C 25C 27C 0.9 1W1W 2W 1W 2W2W N Ņ Ņ Ņ Ņ ω ω ω 4 տ цъ N ò, òo ò ĸ ₽ 00 N Δ o, Freq (GHz)

Vdd (Volt)

Scaling V and f does lower energy/op

1 W to get 2.2 GHz performance. 26 C die temp.

7W to reliably get 4.4 GHz performance. 47C die temp.

If a program that needs a 4.4 Ghz CPU can be recoded to use

two 2.2 Ghz CPUs ... big win.

Vdd (Volt)

How iPod nano 2005 puts its 2 cores to use ...

Dual ARM Processors

- Dual 32-bit ARM7TDMI processors
- Up to 80 MHz processor operation per core with independent clock-skipping feature on COP
- Efficient cross-bar implementation providing zero wait state access to internal RAM
- Integrated 96KB of SRAM
- 8KB of unified cache per processor
- Six DMA channels

Two 80 MHz CPUs. Was used in several nano generations, with one CPU doing audio decoding, the other doing photos, etc.

CS 150 L24: Power and Energy

Design Technique #2 (of 5)

Powering down idle circuits

Add "sleep" transistors to logic ...

Example: Floating point unit logic.

When running fixed-point instructions, put logic "to sleep".

+++ When "asleep", leakage power is dramatically reduced.

---- Presence of sleep transistors slows down the clock rate when the logic block is in use.

Intel example: Sleeping cache blocks

From: "Facing the Hot Chips Challenge Again", Bill Holt, Intel, presented at Hot Chips 17, 2005. CS 150 L24: Power and Energy UC Regents Spring 2012 © UCB Design Technique #3 (of 5)

Slow down "slack paths"

Fact: Most logic on a chip is "too fast"

From "The circuit and physical design of the POWER4 microprocessor", IBM J Res and Dev, 46:1, Jan 2002, J.D. Warnock et al.

Use several supply voltages on a chip ...

Why use multi-Vdd? We can reduce dynamic power by using low-power Vdd for logic off the critical path.

What if we can't do a multi-Vdd design? In a multi-Vt process, we can reduce leakage power on the slow logic by using high-Vth transistors.

From: "Facing the Hot Chips Challenge Again", Bill Holt, Intel, presented at Hot Chips 17, 2005. CS 150 L24: Power and Energy UC Regents Spring 2012 © UCB

LOW POWER ARM 1136JF-STM DESIGN

George Kuo, Anand Iyer Cadence Design Systems, Inc. San Jose, CA 95134, USA

Logical partition into 0.8V and 1.0V nets done manually to meet 350 MHz spec (90nm).

Level-shifter insertion and placement done automatically.

Dynamic power in 0.8V section cut 50% below baseline.

Leakage power in 1.0V section cut 70% below baseline.

From a chapter from new book on ASIC design by Chinnery and Keutzer (UCB).

Design Technique #4 (of 5)

Gating clocks to save power

On a CPU, where does the power go?

So (gasp) gated clocks are a big win. But, done with CAD tools in a disciplined way.

From: Bose, Martonosi, Brooks: Sigmetrics-2001 Tutorial UC Regents Spring 2012 © UCB

Synopsis Power Compiler can do this ...

"Up to 70% power savings at the block level, for applicable circuits" Synopsis Data Sheet

Design Technique #5 (of 5)

Thermal Management

UC Regents Spring 2012 © UCB

Keep chip cool to minimize leakage power

Figure 3: I_{CCINTQ} vs. Junction Temperature with Increase Relative to 25°C

Optimizing Designs for Power Consumption through Changes to the FPGA Environment

XILINX®

IBM Power 4: How does die heat up?

4 dies on a multi-chip module

> 2 CPUs _____ per die

115 Watts: Concentrated in "hot spots"

CS 150 L24: Power and Energy

66.8 C == 152 F

UC Regents Spring 2012 © UCB

82 C == 179.6

Idea: Monitor temperature, servo clock speed

CS 150 L24: Power and Energy

TDP = Thermal Design Point

UC Regents Spring 2012 © UCB

Thursday's lecture: Graphics ...

CS 150 L24: Power and Energy

UC Regents Spring 2012 © UCB