
UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

2012-4-19
Professor John Wawrzynek
today’s lecture by John Lazzaro

CS 150
Digital Design

Lecture 26 – Graphics Processors

www-inst.eecs.berkeley.edu/~cs150/

TAs: Shaoyi Cheng, Daiwei Li, James Parker Play

http://www.eecs.berkeley.edu/~johnw/
http://www.eecs.berkeley.edu/~johnw/
mailto:daiweili@hkn.eecs.berkeley.edu
mailto:daiweili@hkn.eecs.berkeley.edu
mailto:james.parker@berkeley.edu
mailto:james.parker@berkeley.edu

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Power lecture errata

UC Regents Spring 2012 © UCBCS 150 L24: Power and Energy

Powering an iPod nano (2005 edition)
1.2 W-hour battery:
Can supply 1.2 watts
of power for 1 hour.

1.2 W-hr / 5 W ≈ 15 minutes.

Real specs for iPod nano :
14 hours for music,

4 hours for slide shows.

85 mW for music.
300 mW for slides.

More W-hours require bigger battery
and thus bigger “form factor” --
it wouldn’t be “nano” anymore :-).

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

UC Regents Spring 2012 © UCBCS 150 L24: Power and Energy

Gate delay
roughly linear

with Vdd

This magic trick brought to you by Cory Hall ...

3636

Active Power ReductionActive Power Reduction

Slow Fast Slow

L
o

w
 S

u
p

p
ly

V
o

lt
a

g
e

H
ig

h
 S

u
p

p
ly

V
o

lt
a

g
e

Multiple Supply

Voltages

Logic Block
Freq = 1

Vdd = 1

Throughput = 1

Power = 1

Area = 1

Pwr Den = 1

Vdd

Logic Block

Freq = 0.5

Vdd = 0.5

Throughput = 1

Power = 0.25

Area = 2

Pwr Den = 0.125

Vdd/2

Logic Block

Replicated DesignsAnd so, we can transform this:

Block processes stereo audio. 1/2
of clocks for “left”, 1/2 for “right”.

P ~ F ⨯ Vdd
2

P ~ 1 ⨯ 12

Into this: Top block processes “left”, bottom “right”.

3636

Active Power ReductionActive Power Reduction

Slow Fast Slow

L
o

w
 S

u
p

p
ly

V
o

lt
a

g
e

H
ig

h
 S

u
p

p
ly

V
o

lt
a

g
e

Multiple Supply

Voltages

Logic Block
Freq = 1

Vdd = 1

Throughput = 1

Power = 1

Area = 1

Pwr Den = 1

Vdd

Logic Block

Freq = 0.5

Vdd = 0.5

Throughput = 1

Power = 0.25

Area = 2

Pwr Den = 0.125

Vdd/2

Logic Block

Replicated Designs

CV2 power only

P ~ #blks ⨯ F ⨯ Vdd 2

P ~ 2 ⨯ 1/2 ⨯ 1/4 = 1/4

UC Regents Spring 2012 © UCBCS 150 L24: Power and Energy

Scaling V and f does lower energy/op
7W to reliably get 4.4 GHz
performance. 47C die temp.

1 W to get 2.2 GHz
performance. 26 C die temp.

If a program that needs a 4.4
Ghz CPU can be recoded to use
two 2.2 Ghz CPUs ... big win.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Today: Graphics Processors

Computer Graphics. A brief
introduction to “the pipeline”.

Stream Processing. Casting the
graphics pipeline into hardware.

Unified Pipelines. GeForce 8800,
from Nvidia, introduced in 2006.

Kepler. The latest generation from
Nvidia, released last month.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

PC Graphics, 2012 Edition

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Improved turbo will surely be appreciated. More aggressive turbo bins plus the ability to turbo up
above TDP limits for short periods of time will help make PCs feel more responsive even when doing
relatively benign tasks. Things like launching applications, loading web pages or just opening new
window stand to benefit.

The architecture sounds a lot like Intel simply did Nehalem/Westmere better. Over time you come up
with newer, better ways to do things and that’s ultimately what Sandy Bridge looks like - a better,
more efficient way to do what Conroe, Nehalem and Westmere did before it.

The more dramatic changes happened outside of the cores. GPU performance is clearly an important
Sandy Bridge feature as we’ve already shown. I can’t help but be curious about how far Intel could
take its SNB graphics subsystem if it simply scaled up the number of EUs. The media processing
engine, particularly with the video transcode support is very exciting. Assuming image quality is
maintained and there’s good software support at launch, this could very well be Sandy Bridge’s killer
feature. The ability to transcode at over 10x real time on everything from a desktop to a notebook is
just awesome. With good software support, SNB’s video transcode engine could effectively stop
consumer GPU based video encoding in its tracks. The improved video decode engine is also a
welcome addition to the Sandy Bridge architecture.

Connecting it all together we have Sandy Bridge’s ring bus. Generally microprocessor designs don’t
undergo such a radical changes unless the design will be used for a while to come. The ring bus
sounds very scalable and should support growth in core count, L3 cache and GPU performance. This
may end up being the base architecture that takes us from multi-core to many core.

Mobile Sandy Bridge is significantly faster than Arrandale/Clarksfield

Sandy Bridge will ship in Q1 2011 for both notebooks and desktops and from what we’ve heard,
pricing will be very compelling. If you're interested in a sneak peak of Sandy Bridge's performance,
take a look at our preview here.

PCIe bus
supports
discrete
GPU, with
dedicated
RAM and
monitor
outputs.

IGP uses
system
DRAM as
graphics
memory.

PC Graphics Architecture
Core i5

CPU/IGP

Display Out

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

About 12 MB/frame (24-bit pixels)24 frames/sec: 300 MB/second

1
6
0
0

2560

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

 The “unaccelerated” graphics board ...
PCIe Bus Port

Problem: CPU
has to compute

a new pixel
every 10 ns.

10 clock cycles
for a 1 GHz
CPU clock.

Improved turbo will surely be appreciated. More aggressive turbo bins plus the ability to turbo up
above TDP limits for short periods of time will help make PCs feel more responsive even when doing
relatively benign tasks. Things like launching applications, loading web pages or just opening new
window stand to benefit.

The architecture sounds a lot like Intel simply did Nehalem/Westmere better. Over time you come up
with newer, better ways to do things and that’s ultimately what Sandy Bridge looks like - a better,
more efficient way to do what Conroe, Nehalem and Westmere did before it.

The more dramatic changes happened outside of the cores. GPU performance is clearly an important
Sandy Bridge feature as we’ve already shown. I can’t help but be curious about how far Intel could
take its SNB graphics subsystem if it simply scaled up the number of EUs. The media processing
engine, particularly with the video transcode support is very exciting. Assuming image quality is
maintained and there’s good software support at launch, this could very well be Sandy Bridge’s killer
feature. The ability to transcode at over 10x real time on everything from a desktop to a notebook is
just awesome. With good software support, SNB’s video transcode engine could effectively stop
consumer GPU based video encoding in its tracks. The improved video decode engine is also a
welcome addition to the Sandy Bridge architecture.

Connecting it all together we have Sandy Bridge’s ring bus. Generally microprocessor designs don’t
undergo such a radical changes unless the design will be used for a while to come. The ring bus
sounds very scalable and should support growth in core count, L3 cache and GPU performance. This
may end up being the base architecture that takes us from multi-core to many core.

Mobile Sandy Bridge is significantly faster than Arrandale/Clarksfield

Sandy Bridge will ship in Q1 2011 for both notebooks and desktops and from what we’ve heard,
pricing will be very compelling. If you're interested in a sneak peak of Sandy Bridge's performance,
take a look at our preview here.

300 MB/s easy
to sustain.

12 MB
Frame Buffer

Double
Buffering:

CPU
writes
A frame
in one
buffer.

A

DVI Formatter D/A

Control Logic

12 MB
Frame Buffer

Display Out

Control
logic sends
B frame
out of
other
buffer to
display.

B

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Graphics Acceleration

Q. In a multi-core world, why should we
use a special processor for graphics?
A. Programmers generally use a certain
coding style for graphics. We can design a
processor to fit the style.

Q. What kind of graphics are we accelerating?
A. In 2012, interactive entertainment
(3-D games). In the 1990s, 2-D acceleration
(fast windowing systems, games like Pac-Man).

Next: An intro to 3-D graphics.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

The Triangle ...

Simplest closed
shape that may be
defined by
straight edges.

With enough triangles, you can make anything.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

A cube whose faces are made up
of triangles. This is a
3-D model of a cube -- model
includes faces we can’t see
in this view.

A sphere whose faces are made
up of triangles. With enough
triangles, the curvature of the
sphere can be made arbitrarily
smooth.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

A teapot (famous object in computer
graphics history). A “wire-frame” of

triangles can capture the 3-D shape of
complex, man-made objects.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Triangle defined by 3 vertices
By transforming (v’ = f(v)) all vertices in a
3-D object (like the teapot), you can move it
in the 3-D world, change it’s size, rotate it, etc.

vertex vo = (xo, yo, zo)
vertex v1 = (x1, y1, z1)

vertex v2 = (x2, y2, z2)

If a teapot has 10,000 triangles, need to transform
30,000 vertices to move it in a 3-D scene ... per frame!

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Vertex can have color, lighting info ...
If vertices colors are different, this means that a
smooth gradient of color washes across triangle.

vertex vo = (ro, go, bo)
vertex v1 = (r1, g1, b1)

vertex v2 = (r2, g2, b2)

More realistic graphics models include light sources
in the scene. Per-vertex information can carry
information about how light hits the vertex.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

We see a 2-D window into the 3-D world

Let’s
follow

one
3-D

triangle.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

From 3-d triangles to screen pixels
First, project each 3-D triangle that might

“face” the “eye” onto the image plane.

Then, create “pixel fragments”
on the boundary of the

image plane triangle

Then, create “pixel fragments”
to fill in the triangle

(rasterization).

Why “pixel fragments”? A screen pixel color might
depend on many triangles (example: a glass teapot).

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Process pixel fragment to “shade” it.
Algorithmic approach: Per-pixel computational
model of metal and how light reflects off of it.
Move teapot and what reflects off it changes.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Process each fragment to “shade” it.
Artistic approach: Artist paints surface of teapot
in Photoshop. We “map” this “texture” onto each
pixel fragment during shading.
Final step:
Output
Merge.
Assemble
pixel
fragments
to make
final 2-d
image
pixels.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Real-world texture maps: Bike decals

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Applying texture maps: Quality matters
 

   



  
 
































 

   



  
 
































“Good”
algorithm.
B and C
look
blurry.

“Better”
algorithm.
B and C
are
detailed.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Putting it All Together ...

Luxo, Jr: Short movie made by
Pixar, shown at SIGGRAPH in 1986.

First Academy Award given to a
computer graphics movie.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Graphics Acceleration

Next: Back to architecture ...

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

The graphics pipeline in hardware (2004)Figure 2-1 Block diagram

167 MHz
MaxBus

12 Mbps
USB

PCI bus

Boot
ROM

USB 2.0 port (480 Mbps)

USB 2.0 port (480 Mbps)

PCI USB 2.0
controller

DDR SDRAM
DIMM slot

32 MB
DDR RAM

DVI/VGA/composite/S-video
output port

Ethernet port
10/100 Mbps

FireWire 400 port

AGP 4X
bus

167 MHz
Memory

bus

 PMU
power controller

Power
button Fan

Optical
drive

Ultra
ATA/100

bus

Device 0

Device 1

Headphone/audio line-out jack

Hard disk
drive

Radeon
9200

graphics IC

Audio
codec

Ethernet
PHY

FireWire
PHY

PowerPC G4
microprocessor

(L2 cache: 512K 1:1)

AirPort Extreme

I2S

I2S

I2C

Bluetooth
Modem port

Modem module

Data pump
and DAA

Built-in
speaker

Intrepid
memory
controller
and I/O
device

controller

Main ICs and Buses

The architecture of Mac mini is designed around the PowerPC G4 microprocessor and the Intrepid
memory and I/O device controller. The Intrepid occupies the center of the block diagram.

The MaxBus connects the PowerPC G4 microprocessor to the Intrepid ASIC. The MaxBus has 64 data
lines, 32 address lines, and a bus clock speed of 167 MHz. The Intrepid ASIC has other buses that
connect with the boot ROM, the hard disk drive, and the optical drive, the power controller IC, the
sound IC, the internal modem module, and the optional wireless LAN module.

The Intrepid I/O controller has a 32-bit PCI bus with a bus clock speed of 33 MHz.

Each of the components listed here is described in one of the following sections.

16 Block Diagram and Buses
2005-04-05 | © 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Architecture

Output Merge

Figure 2-1 Block diagram

167 MHz
MaxBus

12 Mbps
USB

PCI bus

Boot
ROM

USB 2.0 port (480 Mbps)

USB 2.0 port (480 Mbps)

PCI USB 2.0
controller

DDR SDRAM
DIMM slot

32 MB
DDR RAM

DVI/VGA/composite/S-video
output port

Ethernet port
10/100 Mbps

FireWire 400 port

AGP 4X
bus

167 MHz
Memory

bus

 PMU
power controller

Power
button Fan

Optical
drive

Ultra
ATA/100

bus

Device 0

Device 1

Headphone/audio line-out jack

Hard disk
drive

Radeon
9200

graphics IC

Audio
codec

Ethernet
PHY

FireWire
PHY

PowerPC G4
microprocessor

(L2 cache: 512K 1:1)

AirPort Extreme

I2S

I2S

I2C

Bluetooth
Modem port

Modem module

Data pump
and DAA

Built-in
speaker

Intrepid
memory
controller
and I/O
device

controller

Main ICs and Buses

The architecture of Mac mini is designed around the PowerPC G4 microprocessor and the Intrepid
memory and I/O device controller. The Intrepid occupies the center of the block diagram.

The MaxBus connects the PowerPC G4 microprocessor to the Intrepid ASIC. The MaxBus has 64 data
lines, 32 address lines, and a bus clock speed of 167 MHz. The Intrepid ASIC has other buses that
connect with the boot ROM, the hard disk drive, and the optical drive, the power controller IC, the
sound IC, the internal modem module, and the optional wireless LAN module.

The Intrepid I/O controller has a 32-bit PCI bus with a bus clock speed of 33 MHz.

Each of the components listed here is described in one of the following sections.

16 Block Diagram and Buses
2005-04-05 | © 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Architecture

To
display

Create pixels
fragments

Algorithms
are usually
hardwired

Process each
vertex

3-D vertex “stream” sent by CPU

Programmable CPU
”Vertex Shader”

Process pixel
fragments

Programmable CPU
”Pixel Shader”

Programming
Language/API?
DirectX, OpenGL

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Vertex Shader: A “stream processor”

Shader CPU

Input Registers
(Read Only)

Vertex “stream” from CPU
Only one vertex at a time
placed in input registers.

Constant
Registers

(Read Only)

From CPU: changes
slowly (per frame,

per object)

Output Registers
(Write Only)

Vertex “stream”
ready for 3-D to
2-D conversion

Shader creates
one vertex out for
each vertex in.Working

Registers
(Read/Write)

Shader
Program
Memory

Short
(ex: 128 instr)
straight-line
code.
Same code
runs on every
vertex.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Optimized instructions and data formats

Input Registers

From CPU

Output Registers

Shader CPU Shader
Program
Memory

128-bit
registers,
holding four
32-bit floats.

Typical use:
(x,y,z,w)
representation
of a point in
3-D
space.

x y z w

x y z w

Typical instruction:

rsq dest src

dest.{x,y,z,w} =
1.0/sqrt(abs(src.w)).
If src.w=0, dest ∞.

The 1/sqrt()
function is often
used in graphics.

To 3-D/2-D

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Easy to parallelize: Vertices independent

Input Registers

From CPU

Output Registers

Shader CPU

x y z w

x y z w

Input Registers

Output Registers

Shader CPU

x y z w

x y z w

To 3-D/
2-D

Caveat:
Care
might be
needed
when
merging
streams.

Why?
3-D to
2-D may
expect
triangle
vertices
in order
in the
stream.

Shader CPUs
easy to multithread.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Pixel shader specializations ...

Process each
vertex

Create pixels
fragments

Output Merge

Figure 2-1 Block diagram

167 MHz
MaxBus

12 Mbps
USB

PCI bus

Boot
ROM

USB 2.0 port (480 Mbps)

USB 2.0 port (480 Mbps)

PCI USB 2.0
controller

DDR SDRAM
DIMM slot

32 MB
DDR RAM

DVI/VGA/composite/S-video
output port

Ethernet port
10/100 Mbps

FireWire 400 port

AGP 4X
bus

167 MHz
Memory

bus

 PMU
power controller

Power
button Fan

Optical
drive

Ultra
ATA/100

bus

Device 0

Device 1

Headphone/audio line-out jack

Hard disk
drive

Radeon
9200

graphics IC

Audio
codec

Ethernet
PHY

FireWire
PHY

PowerPC G4
microprocessor

(L2 cache: 512K 1:1)

AirPort Extreme

I2S

I2S

I2C

Bluetooth
Modem port

Modem module

Data pump
and DAA

Built-in
speaker

Intrepid
memory
controller
and I/O
device

controller

Main ICs and Buses

The architecture of Mac mini is designed around the PowerPC G4 microprocessor and the Intrepid
memory and I/O device controller. The Intrepid occupies the center of the block diagram.

The MaxBus connects the PowerPC G4 microprocessor to the Intrepid ASIC. The MaxBus has 64 data
lines, 32 address lines, and a bus clock speed of 167 MHz. The Intrepid ASIC has other buses that
connect with the boot ROM, the hard disk drive, and the optical drive, the power controller IC, the
sound IC, the internal modem module, and the optional wireless LAN module.

The Intrepid I/O controller has a 32-bit PCI bus with a bus clock speed of 33 MHz.

Each of the components listed here is described in one of the following sections.

16 Block Diagram and Buses
2005-04-05 | © 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Architecture

Figure 2-1 Block diagram

167 MHz
MaxBus

12 Mbps
USB

PCI bus

Boot
ROM

USB 2.0 port (480 Mbps)

USB 2.0 port (480 Mbps)

PCI USB 2.0
controller

DDR SDRAM
DIMM slot

32 MB
DDR RAM

DVI/VGA/composite/S-video
output port

Ethernet port
10/100 Mbps

FireWire 400 port

AGP 4X
bus

167 MHz
Memory

bus

 PMU
power controller

Power
button Fan

Optical
drive

Ultra
ATA/100

bus

Device 0

Device 1

Headphone/audio line-out jack

Hard disk
drive

Radeon
9200

graphics IC

Audio
codec

Ethernet
PHY

FireWire
PHY

PowerPC G4
microprocessor

(L2 cache: 512K 1:1)

AirPort Extreme

I2S

I2S

I2C

Bluetooth
Modem port

Modem module

Data pump
and DAA

Built-in
speaker

Intrepid
memory
controller
and I/O
device

controller

Main ICs and Buses

The architecture of Mac mini is designed around the PowerPC G4 microprocessor and the Intrepid
memory and I/O device controller. The Intrepid occupies the center of the block diagram.

The MaxBus connects the PowerPC G4 microprocessor to the Intrepid ASIC. The MaxBus has 64 data
lines, 32 address lines, and a bus clock speed of 167 MHz. The Intrepid ASIC has other buses that
connect with the boot ROM, the hard disk drive, and the optical drive, the power controller IC, the
sound IC, the internal modem module, and the optional wireless LAN module.

The Intrepid I/O controller has a 32-bit PCI bus with a bus clock speed of 33 MHz.

Each of the components listed here is described in one of the following sections.

16 Block Diagram and Buses
2005-04-05 | © 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Architecture

Pixel shader needs fast
access to the map of
Europe on teapot (via
graphics card RAM).

Texture maps (look-up
tables) play a key role.

Process pixel
fragments

”Pixel Shader”
CPU

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Pixel Shader: Stream processor + Memory

Shader CPU

Input Registers
(Read Only)

Pixel fragment stream from rasterizer
Only one fragment at a time
placed in input registers.

Constant
Registers

(Read Only)

From CPU: changes
slowly (per frame,

per object)

Registers
(Read/Write)

Register R0 is
pixel fragment,

ready for output merge

Shader creates one
fragment out for
each fragment in.

Indices into
texture maps.

Texture
Registers

Texture
Engine

Memory
System

Engine does
interpolation.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Example Design: Nvidia GeForce 7900

Vertex
Shaders: 8

Pixel
Shaders:
24

3-D to 2-D

Output
Merge
Units

Texture Cache

278 Million Transistors, 650 MHz clock, 90 nm process

Figure 2-1 Block diagram

167 MHz
MaxBus

12 Mbps
USB

PCI bus

Boot
ROM

USB 2.0 port (480 Mbps)

USB 2.0 port (480 Mbps)

PCI USB 2.0
controller

DDR SDRAM
DIMM slot

32 MB
DDR RAM

DVI/VGA/composite/S-video
output port

Ethernet port
10/100 Mbps

FireWire 400 port

AGP 4X
bus

167 MHz
Memory

bus

 PMU
power controller

Power
button Fan

Optical
drive

Ultra
ATA/100

bus

Device 0

Device 1

Headphone/audio line-out jack

Hard disk
drive

Radeon
9200

graphics IC

Audio
codec

Ethernet
PHY

FireWire
PHY

PowerPC G4
microprocessor

(L2 cache: 512K 1:1)

AirPort Extreme

I2S

I2S

I2C

Bluetooth
Modem port

Modem module

Data pump
and DAA

Built-in
speaker

Intrepid
memory
controller
and I/O
device

controller

Main ICs and Buses

The architecture of Mac mini is designed around the PowerPC G4 microprocessor and the Intrepid
memory and I/O device controller. The Intrepid occupies the center of the block diagram.

The MaxBus connects the PowerPC G4 microprocessor to the Intrepid ASIC. The MaxBus has 64 data
lines, 32 address lines, and a bus clock speed of 167 MHz. The Intrepid ASIC has other buses that
connect with the boot ROM, the hard disk drive, and the optical drive, the power controller IC, the
sound IC, the internal modem module, and the optional wireless LAN module.

The Intrepid I/O controller has a 32-bit PCI bus with a bus clock speed of 33 MHz.

Each of the components listed here is described in one of the following sections.

16 Block Diagram and Buses
2005-04-05 | © 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Architecture

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Break Time ...

Next: Unified architectures

Play

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Unified Architectures

Basic idea: Replace specialized logic (vertex
shader, pixel shader, hardwired algorithms)
with many copies of one unified CPU design.

Consequence: You no longer “see” the
graphics pipeline when you look at
the architecture block diagram.

Designed for: DirectX 10 (Microsoft Vista),
and new non-graphics markets for GPUs.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

throughput by exploiting the natural independence between verti-
ces and between pixels fragments. Multiple instances of vertex
and pixel shaders are used to process independent vertices and
pixel fragments in parallel. Hardware implementations typically
include a larger number of pixel shaders than vertex shaders re-
flecting the higher ratio of pixels to vertices in a typical rendering
workload [Montrym and Moreton 2005]. This characteristic also
influences the cost of pixel shaders relative to vertex shaders since
pixel shaders are more heavily replicated.

The programmable pipeline is directed using a low-level ab-
straction layer such as OpenGL or Direct3D. The abstraction
layer serves to hide the differences between varying implementa-
tions of the pipeline and provide a more convenient programming
abstraction. Fixed platforms, such as consoles, differ from PCs in
that there is only one hardware implementation, so often low-level
details of the hardware are exposed through the abstraction layer.

We refer to the abstraction layer as a runtime and it is con-
trolled through its API. The runtime provides device independent
resource management (allocation, lifetime, initialization, virtual-
ization, etc) for texture maps, vertex buffers, and other state and it
communicates with the hardware accelerator through device-
dependent driver software. The transition to a programmable
pipeline has added the task of abstracting and managing shader
programs to the runtime.

The limited instruction store of early programmable proces-
sors made the choice of programming in an assembly-like lan-
guage [Gray 2003] both practical and in many cases necessary to
maximize control of the limited resources. However, modest
increases in available hardware resources created a need for a
higher-level programming abstraction to maximize programmer
productivity. C-like programming languages with some customi-
zations to match the underlying rendering pipeline (4-vectors,
intrinsics, I/O registers) answered this need [Proudfoot et al. 2001;
Microsoft 2002; Mark 2003; Kessenich 2004; McCool and Du
Toit 2004;] Additionally, other languages have been developed to
explore the use of the substantial floating-point processing and
memory bandwidth of GPUs for application domains other than

rendering [Buck et al. 2004; McCormick et al. 2004], but we will
not address this latter subject further in this paper.

While there are similarities to imperative CPU programming
languages (notably C), there are some significant departures. For
example, the machine and compilation model is more virtual ma-
chine-like, with the shader assembly language serving as a ma-
chine-independent intermediate language (IL) rather than a spe-
cific machine language1. Though a high-level language like Mi-
crosoft’s HLSL can be compiled to IL offline, the translation to
the target hardware occurs just in time (JIT) at run-time with the
translator implemented as part of the driver infrastructure for the
GPU. We note that the OpenGL Shading Language takes a dif-
ferent approach with the entire compilation process occuring at
run-time.

Another significant difference is that shading programs are
not standalone applications, and are instead executing in concert
with a program executing on the CPU that orchestrates the render-
ing pipeline. The CPU program also supplies parameters to the
shading program in the form of texture maps or by populating on-
chip registers called constants.

While this paper does not describe a specific hardware em-
bodiment of the new pipeline architecture, the pipeline design is
shaped significantly by hardware practicalities and was designed
concurrently with multiple hardware implementations. Many of
the structural underpinnings from current hardware implementa-
tions [ATI 2005; Doggett 2005; Montrym and Moreton 2005]
continue to be both relevant and influential in this design.

Feature 1.1 2001 2.0 2002 3.0 2004† 4.0 2006

128 256 !512 instruction slots

4+8‡ 32+64‡
!512

!64K

!96 !256 !256 constant regis-

ters 8 32 224

16x4096

12 12 32 tmp registers

2 12 32

4096

16 16 16 16 input registers

4+2§ 8+2§ 10 32

render targets 1 4 4 8

samplers 8 16 16 16

 4 textures

 8 16 16

128

2D tex size 2Kx2K 8Kx8K

integer ops !

load op !

sample offsets !

! ! ! transcendental

ops ! !

!

derivative op ! !

 static stat/dyn flow control

 stat/dyn

dynamic

Table 1: Shader model feature comparison summary.
5
specification released in 2002, hardware in 2004;

<
texture load > arithmetic

instructions;
?
texture > color registers; dashed line separates vertex shader

(above) from pixel shader (below)

3. The Pipeline

The Direct3D 10 pipeline retains the structure of the traditional
hardware-accelerated 3D pipeline. Two new stages have been
added and other stages have been either simplified or further gen-
eralized. The basic pipeline is illustrated in Figure 1. For consis-
tency we describe each of the pipeline stages, rather than just the
additions. We use traditional terms such as vertex, texture, and
pixel for continuity with prior nomenclature, but acknowledge
that this terminology reflects a specific usage of a more general
processing capability.

Input Assembler (IA) gathers 1D vertex data from up to 8
input streams attached to vertex buffers and converts data items to
a canonical format (e.g., float32). Each stream specifies an inde-
pendent vertex structure containing up to 16 fields (called ele-
ments). An element is a homogenous tuple of 1 to 4 data items
(e.g., float32s). A vertex is assembled by reading from the cur-
rently enabled streams. Normally vertex data is read sequentially
from each vertex buffer; however, if an index buffer is specified
then each stream uses a shared index to compute the offset into
each vertex buffer. Indexing allows additional performance op-
timizations in that the vertex processor computes a result that is
completely determined by the index value, therefore recomputa-
tion of results for the same index can be avoided using a result
cache indexed by the index value.

The IA also supports a mechanism that allows the IA to effec-
tively replicate an object n times. This mechanism is an address-
ing mode referred to as instancing in which a repeat count n is
associated with block of k vertices (corresponding to an object).
At the same time, the primitive data is “tagged” with a current
instance, primitive, and vertex id and these ids can be accessed in
the programmable stages to compute values such as transforma-
tions or material parameters based on these ids.

1 This does contradict the notion that the assembly-level shader program-

mer has absolute control.

DirectX 10 (Vista): Towards Shader Unity
Earlier APIs: Pixel and Vertex CPUs very different ...

DirectX
10:
Many
specs
are
identical
for
Pixel
and
Vertex
CPUs

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

DirectX 10 : New Pipeline Features ...

Vertex Shader (VS) is most commonly used to transform
vertices from object space to clip space. The VS reads a single
vertex and produces a single vertex as output. The VS and other
programmable stages share a common feature set that includes an
expanded set of floating-point, integer, control, and memory read
instructions allowing access to up to 128 memory buffers (tex-
tures) and 16 parameter (constant) buffers. This common core is
described in more detail in Section 4.

Geometry Shader (GS) takes the vertices of a single primi-
tive (point, line segment, or triangle) as input and generates the
vertices of zero or more primitives. The input and output primi-
tive types need not match, but they are fixed for the shader pro-
gram. A GS program can amplify the number of input primitives
by emitting additional primitives subject to a per-invocation limit
of 1024 32-bit values of vertex data. Triangles and lines are out-
put as connected strips of vertices. A GS program can output
more than one strip in a single invocation or it can effectively
delete an input primitive by not producing an output. A GS pro-
gram can also simply affix additional attributes to a primitive
without generating additional geometry, for example, computing
additional uniform-valued attributes for each primitive. Since all
of the primitive vertices are available, geometric attributes such as
a triangle’s plane equation can be readily computed.

In addition to the traditional input primitives, triangle and line
primitives may also be processed with their adjacent vertices. A
triangle comprises 3 vertices plus 3 adjacent vertices while a line
has 2 vertices with 2 adjacent vertices as shown in Figure 2. Ad-
jacent vertices are included as part of the vertex buffer formats for
triangle and line primitives and are extracted by the IA when a
primitive topology with adjacency is specified (rendered).

Stream Output (SO) copies a subset of the vertex informa-
tion output by the GS to up to 4 1D output buffers in sequential

order. Ideally the SO should have symmetric output capabilities
with the (non-indexed) input capabilities of the IA (8 streams x 16
elements), but the hardware costs were not justified. The SO is
limited to either 1 multi-element output stream of up to 16 ele-
ments or up to 4 single-element output streams. While the IA can
support reading from 8- and 16-bit data types and converting to
float32, the SO can only write raw 32-bit data types. However,
data conversion and packing can be easily implemented in a GS
program reducing the need for fixed-function support.

Set-up and Rasterization Stage (RS) is a fixed-function
stage handling clipping, culling, perspective divide, viewport
transform, primitive set-up, scissoring, depth offset, and fragment
generation. Modern GPU designs invariably include some form
of early depth processing (z-cull, hierarchical-z) [ATI 2005; Mon-
trym and Moreton 2005] as well. We explicitly mention this op-
timization as it is becoming less transparent to application devel-
opers. The input of the RS is the vertices and attributes of a single
primitive and the output is a series of pixel fragments.

The pixel shader program specifies the manner in which ver-
tex attributes are interpolated to produce fragment attributes (no
interpolation, non-perspective-corrected interpolation, or perspec-
tive-corrected interpolation). Modern GPUs usually support mul-
tisample antialiasing [Akeley 1993]. Multisampling requires
additional care in specifying attribute evaluation behavior when a
fragment does not include the pixel center, since center evaluation
may result in an out-of-gamut value. An additional evaluation
qualifier (centroid) can be specified to request evaluation within
the fragment boundaries.

Pixel Shader (PS) reads the attributes of a single pixel frag-
ment and produces a single output fragment consisting of 1 to 8
attribute (color) values and optionally a depth value. The attrib-
ute values (elements) are each written to a separate color buffer
(termed a render target) or the entire result may be discarded (no
fragment is output). Normally depth and stencil values are for-
warded from the RS. However, the PS can replace the depth
value with a computed value, but not the stencil value. Both dis-
carding pixels and replacing the depth value may defeat depth-
processing optimizations in the RS since they can change the
fragment’s visibility.

Figure 1: Direct3D 10 pipeline.

/a1or additions are highlighted.

!"#$%&'(()*+,)-
.!'/

012),&3456)-
.03/

7$%#$%&8)-9)-
.78/

:,1#&;&0-<=)>%&;
3)%$#&;&?5-,@&A&;&

B5(%)-1C)&.B3/

D)-%)2&3456)-
.D3/

E)<*)%-@&
3456)-&.E3/

8)*<-@

!"6)2
F$GG)-

H)#%4I
3%)">1,

3%-)5*
7$%#$%&
.37/

J2KL+

J2KL+

KL+

MN2J2KL+

KL+;O+

J2KL+&<-

MN2J2KL+

D)-%)2
F$GG)-

D)-%)2
F$GG)-

P)2%$-)

O

MLO

P)2%$-)

3%-)5*
F$GG)-

P)2%$-)

B)"6)-
P5-9)%

J&<-&M

MLO

O

35*#,)-

MN

35*#,)-

35*#,)-

MN

MN2J2KL+

KL2J2KL+

&&&O2J2KL+&;

KL+&;&O+

!6(

&:,1#I:$,,&;&

BP&'--5@

:<"(%5"%

:<"(%5"%

:<"(%5"%

J2KL+

Q5>1"9

MLO

M&1"RM&<$%

M&1"R&M&<$%

M&1"R&ST*5"@&<$%

M&1"R&ST*5"@&<$%

M&1"R&STM&<$%

M&1"R&M&<$%

Output Merger (OM)2 takes a fragment from the PS and per-
forms traditional stencil and depth testing operations as well as
render target blending. The OM specifies bind points for a single
unified depth/stencil buffer and up to 8 other render targets (at-
tribute buffers). The pixel shader must output a separate value for
each render target (there is no multicast). While a single blending
function is shared across all of the render targets, blending can be
enabled or disabled independently for each render target.

DS

DM

DL

'S

'L

'M

DS

DM

'S

'M

Figure 2: Triangle and line segment with ad1acent vertices.

3.1 Memory Structure and Data Flow

Modern GPUs rely heavily on processing retained data structures
in the form of vertex and index buffers, texture maps, render tar-
gets and depth/stencil buffers. GPUs typically store these in a
high-performance memory system attached directly to the GPU.
The range of structures includes homogeneous 1D through 3D

2 Some implementations traditionally refer to this functionality as “ROP”

for raster operations.

Geometry
Shader:
Lets a
shader
program
create new
triangles.

Stream
Output:
Lets
vertex
stream
recirculate
through
shaders
many
times ...
(and also,
back to
CPU)

Also: Shader
CPUs are more

like RISC
machines in
many ways.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Why? “Particle Systems” ...Why? Particle systems ...

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Why? Fractal images ...

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

 GeForce 8800 Architecture in Detail

Figure 12. GeForce 8800 GTX Block Diagram

TB-02787-001_v1.0 19

NVidia 8800: Unified GPU, announced Fall 2006

128
Shader
CPUs Streams

loop
around...

Thread processor sets shader type of each CPU

1.35 GHz Shader CPU Clock, 575 MHz core clock

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

 GeForce 8800 Architecture in Detail

Figure 12. GeForce 8800 GTX Block Diagram

TB-02787-001_v1.0 19

Graphics-centric functionality ...
3-D to 2-D (vertex to pixel)

Pixel fragment output merge

Texture
engine and
memory
system

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Can be reconfigured with graphics logic hidden ...

128 scalar 1.35 GHz processors: Integer ALU,
dual-issue single-precision IEEE floats.

 GeForce 8800 Architecture Overview

Figure 9. CUDA Thread Computing Pipeline
CUDA enables new applications with a standard platform for extracting valuable

information from vast ;uantities of raw data< and provide the following key benefits

in this area?

! Enables high density computing to be deployed on standard enterprise

workstations and server environments for data intensive applications.

! Divides complex computing tasks into smaller elements that are processed

simultaneously in the GPU to enable real-time decision making.

! Provide a standard platform based on industry-leading NVIDIA hardware and

software for a wide range of high data bandwidth< computationally intensive

applications.

! Combines with multi-core CPU systems to provide a flexible computing

platform.

! Controls complex programs and coordinates inherently parallel computation on

the GPU processed by thousands of computing threads.

CUDAHs high performance< scalable computing architecture solves complex parallel

problems 100x faster than traditional CPU-based architectures?

! Up to of 12L parallel 1.35GHz compute cores in GeQorce LL00 GTX GPUs

harness massive floating point processing power enabling maximum application

performance.

! Thread computing scales across NVIDIAHs complete line of next generation

GPUs - from embedded GPUs to high performance GPUs that support

hundreds of processors.

! NVIDIA SUIV technology allows multiple GPUs to distribute computing to

provide unparalleled compute density.

TB-02787-001_v1.0 13

Texture system set up to look like a conventional
memory system (768MB GDDR3, 86 GB/s)

1000s
of active
threads

3 TeraFlops Peak Performance
Ships with a C compiler.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Chip Facts

90nm process
681M Transistors
80 die/wafer
(pre-testing)

A big die. Many chips will not work
(low yield). Low profits.

4 year
design cycle

Design Facts

$400 Million
design budget
600 person-years: 10 people at start, 300 at peak

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

GeForce 8800 GTX Card: $599 List Price

PCI-Express 16X Card - 2 Aux Power Plugs!

185 Watts Thermal Design Point (TDP) --
TDP is a “real-world” maximum power spec.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Some products are “loss-leaders”

Breakthrough
product
creates
“free”
publicity you
can’t buy.

(1) Hope: when chip “shrinks” to 65nm fab process, die will
be smaller, yields will improve, profits will rise.
(2) Simpler versions of the design will be made to create an
entire product family, some very profitable.
“We tape out a chip a month”, NVidia CEO quote.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

And it happened! 2008 nVidia products

GTX 280

Price
similar
to
8800,
stream
CPU
count
> 2X.

9800
GTX

Specs
similar
to 8800,
card sells
for
$199.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

And again in 2012! GTX 680 -- “Kepler”

GTX
560 Ti

Specs
better
than
GTX 280,
sells for
$249

GTX 680

3X more
effective
CPUs as
GTX 280,
lower price
point.

6X more
CPUs as
8800,
(from
2006).

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

28nm
process

3.5 billion
transistors

GTX 680

1 GHz
core clock

6GHz
GDDR5

3 years,
1000
engineers

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

5

Kepler Architecture In-Depth (GeForce GTX 680)
Like Fermi, Kepler GPUs are composed of different configurations of Graphics Processing Clusters
(GPCs), Streaming Multiprocessors (SMs), and memory controllers. The GeForce GTX 680 GPU consists
of four GPCs, eight next-generation Streaming Multiprocessors (SMX), and four memory controllers.

Figure 1: GeForce GTX 680 Block Diagram

GTX 680

4X as many
shader CPUs,
running at
2/3 the clock
(vs GTX 560).

Polymorph
engine does
polygon
tessellation.
PCIe bus no
longer limits
triangle count.

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

History and Graphics Processors

Create standard model from common
practice: Wire-frame geometry,
triangle rasterization, pixel shading.

Put model in hardware: Block diagram of
chip matches computer graphics math.

Evolve to be programmable: At some
point, it becomes hard to see the math
in the block diagram.

“Wheel of reincarnation” -- Hardwired graphics hardware
evolves to look like general-purpose CPU. Ivan Sutherland
co-wrote a paper on this topic in 1968!

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Samaritan: Direct X-11 demo from Unreal.
Runs in real-time on one GTX 680 (barely).

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

GPUs on mobile devices

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Same ideas, scaled down ...

UC Regents Spring 2012 © UCBCS 150 L24: Power and Energy

iPad: iPhone++
To

p
Bo

tt
om

A5X: 2 ARM Cortex9 Cores,
expanded PowerVR GPU

Ce
llu

la
r

RF

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

2012 iPad
CPU/IGP.

Apple A5X

IGP fills
about 40%
of die.

45 nm,
13 x 13 mm

IGP: 2%
of Kepler
(in GFLOPs).

UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Today: Graphics Processors

Computer Graphics. A brief
introduction to “the pipeline”.

Stream Processing. Casting the
graphics pipeline into hardware.

Unified Pipelines. GeForce 8800,
from Nvidia, introduced in 2006.

Kepler. The latest generation from
Nvidia, released last month.

