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Power lecture errata
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Powering an iPod nano (2005 edition)
1.2 W-hour battery: 
Can supply 1.2 watts 
of power for 1 hour.

1.2 W-hr / 5 W ≈ 15 minutes.

Real specs for iPod nano : 
14 hours for music, 

4 hours for slide shows.

85 mW for music.
300 mW for slides.

More W-hours require bigger battery 
and thus bigger “form factor” -- 
it wouldn’t be “nano” anymore :-).
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Gate delay 
roughly linear 

with Vdd 

This magic trick brought to you by Cory Hall ...
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Pwr Den = 1

Vdd

Logic Block
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Vdd  = 0.5

Throughput = 1

Power = 0.25

Area = 2

Pwr Den = 0.125

Vdd/2

Logic Block

Replicated DesignsAnd so, we can transform this:

Block processes stereo audio. 1/2 
of clocks for “left”, 1/2 for “right”.

P ~ F ⨯ Vdd
2

P ~ 1 ⨯ 12

Into this: Top block processes “left”, bottom “right”.
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CV2  power only

P ~ #blks ⨯  F  ⨯ Vdd 2

P ~    2   ⨯ 1/2 ⨯ 1/4 = 1/4 
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Scaling V and f does lower energy/op
7W to reliably get 4.4 GHz 
performance. 47C die temp.

1 W to get 2.2 GHz 
performance. 26 C die temp.

If a program that needs a 4.4 
Ghz CPU can be recoded to use 
two 2.2 Ghz CPUs ... big win.
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Today: Graphics Processors

Computer Graphics.  A brief 
introduction to “the pipeline”.

Stream Processing. Casting the 
graphics pipeline into hardware.

Unified Pipelines. GeForce 8800,
from Nvidia, introduced in 2006.

Kepler. The latest generation from 
Nvidia, released last month.
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PC Graphics, 2012 Edition
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Improved turbo will surely be appreciated. More aggressive turbo bins plus the ability to turbo up
above TDP limits for short periods of time will help make PCs feel more responsive even when doing
relatively benign tasks. Things like launching applications, loading web pages or just opening new
window stand to benefit.

The architecture sounds a lot like Intel simply did Nehalem/Westmere better. Over time you come up
with newer, better ways to do things and that’s ultimately what Sandy Bridge looks like - a better,
more efficient way to do what Conroe, Nehalem and Westmere did before it.

The more dramatic changes happened outside of the cores. GPU performance is clearly an important
Sandy Bridge feature as we’ve already shown. I can’t help but be curious about how far Intel could
take its SNB graphics subsystem if it simply scaled up the number of EUs. The media processing
engine, particularly with the video transcode support is very exciting. Assuming image quality is
maintained and there’s good software support at launch, this could very well be Sandy Bridge’s killer
feature. The ability to transcode at over 10x real time on everything from a desktop to a notebook is
just awesome. With good software support, SNB’s video transcode engine could effectively stop
consumer GPU based video encoding in its tracks. The improved video decode engine is also a
welcome addition to the Sandy Bridge architecture.

Connecting it all together we have Sandy Bridge’s ring bus. Generally microprocessor designs don’t
undergo such a radical changes unless the design will be used for a while to come. The ring bus
sounds very scalable and should support growth in core count, L3 cache and GPU performance. This
may end up being the base architecture that takes us from multi-core to many core.

Mobile Sandy Bridge is significantly faster than Arrandale/Clarksfield

Sandy Bridge will ship in Q1 2011 for both notebooks and desktops and from what we’ve heard,
pricing will be very compelling. If you're interested in a sneak peak of Sandy Bridge's performance,
take a look at our preview here.

PCIe bus 
supports 
discrete 
GPU, with 
dedicated 
RAM and 
monitor 
outputs.

IGP uses 
system 
DRAM as 
graphics 
memory.

PC Graphics Architecture
Core i5 

CPU/IGP

Display Out
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About 12 MB/frame (24-bit pixels)24 frames/sec: 300 MB/second

1
6
0
0

2560
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 The “unaccelerated” graphics board ...
PCIe Bus Port

Problem: CPU 
has to compute 

a new pixel 
every 10 ns. 

10 clock cycles 
for a 1 GHz 
CPU clock.

Improved turbo will surely be appreciated. More aggressive turbo bins plus the ability to turbo up
above TDP limits for short periods of time will help make PCs feel more responsive even when doing
relatively benign tasks. Things like launching applications, loading web pages or just opening new
window stand to benefit.

The architecture sounds a lot like Intel simply did Nehalem/Westmere better. Over time you come up
with newer, better ways to do things and that’s ultimately what Sandy Bridge looks like - a better,
more efficient way to do what Conroe, Nehalem and Westmere did before it.

The more dramatic changes happened outside of the cores. GPU performance is clearly an important
Sandy Bridge feature as we’ve already shown. I can’t help but be curious about how far Intel could
take its SNB graphics subsystem if it simply scaled up the number of EUs. The media processing
engine, particularly with the video transcode support is very exciting. Assuming image quality is
maintained and there’s good software support at launch, this could very well be Sandy Bridge’s killer
feature. The ability to transcode at over 10x real time on everything from a desktop to a notebook is
just awesome. With good software support, SNB’s video transcode engine could effectively stop
consumer GPU based video encoding in its tracks. The improved video decode engine is also a
welcome addition to the Sandy Bridge architecture.

Connecting it all together we have Sandy Bridge’s ring bus. Generally microprocessor designs don’t
undergo such a radical changes unless the design will be used for a while to come. The ring bus
sounds very scalable and should support growth in core count, L3 cache and GPU performance. This
may end up being the base architecture that takes us from multi-core to many core.

Mobile Sandy Bridge is significantly faster than Arrandale/Clarksfield

Sandy Bridge will ship in Q1 2011 for both notebooks and desktops and from what we’ve heard,
pricing will be very compelling. If you're interested in a sneak peak of Sandy Bridge's performance,
take a look at our preview here.

300 MB/s easy 
to sustain.

12 MB 
Frame Buffer

Double 
Buffering:

CPU 
writes 
A frame
in one 
buffer. 

A

DVI Formatter D/A

Control Logic

12 MB 
Frame Buffer

Display Out

Control 
logic sends 
B frame 
out of 
other 
buffer to 
display.

B
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Graphics Acceleration

Q. In a multi-core world, why should we 
use a special processor for graphics? 
A. Programmers generally use a certain 
coding style for graphics. We can design a 
processor to fit the style. 

Q. What kind of graphics are we accelerating?
A. In 2012, interactive entertainment 
(3-D games).  In the 1990s,  2-D acceleration 
(fast windowing systems, games like Pac-Man).

Next: An intro to 3-D graphics.
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The Triangle ...

Simplest closed 
shape that may be 
defined by 
straight edges.

With enough triangles, you can make anything.
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A cube whose faces are made up 
of triangles. This is a 
3-D model of a cube -- model  
includes faces we can’t see 
in this view.

A sphere whose faces are made 
up of triangles. With enough 
triangles, the curvature of the 
sphere can be made arbitrarily 
smooth.
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A teapot (famous object in computer 
graphics history).  A “wire-frame” of 

triangles can capture the 3-D shape of 
complex, man-made objects.



UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Triangle defined by 3 vertices
By transforming (v’ = f(v)) all vertices in a 
3-D object (like the teapot), you can move it 
in the 3-D world, change it’s size, rotate it, etc.

vertex vo = (xo, yo, zo)
vertex v1 = (x1, y1, z1)

vertex v2 = (x2, y2, z2)

If a teapot has 10,000 triangles, need to transform 
30,000 vertices to move it in a 3-D scene ... per frame!
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Vertex can have color, lighting info ...
If vertices colors are different, this means that a 
smooth gradient of color washes across triangle.

vertex vo = (ro, go, bo)
vertex v1 = (r1, g1, b1)

vertex v2 = (r2, g2, b2)

More realistic graphics models include light sources 
in the scene. Per-vertex information can carry 
information about how light hits the vertex.
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We see a 2-D window into the 3-D world

Let’s 
follow 

one 
3-D 

triangle.
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From 3-d triangles to screen pixels
First, project each 3-D triangle that might

“face” the “eye” onto the image plane.

Then, create “pixel fragments” 
on the boundary of the 

image plane triangle

Then, create “pixel fragments” 
to fill in the triangle 

(rasterization).

Why “pixel fragments”?  A screen pixel color might 
depend on many triangles (example: a glass teapot).
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Process pixel fragment to “shade” it.
Algorithmic approach: Per-pixel computational 
model of metal and how light reflects off of it. 
Move teapot and what reflects off it changes.
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Process each fragment to “shade” it.
Artistic approach: Artist paints surface of teapot 
in Photoshop. We “map” this “texture” onto each 
pixel fragment during shading.
Final step: 
Output 
Merge. 
Assemble 
pixel 
fragments 
to make 
final 2-d 
image 
pixels.
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Real-world texture maps: Bike decals
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Applying texture maps: Quality matters
 

   



  
 



























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

  
 
































“Good” 
algorithm. 
B and C 
look 
blurry.

“Better” 
algorithm. 
B and C 
are
detailed.
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Putting it All Together ...

Luxo, Jr: Short movie made by 
Pixar, shown at SIGGRAPH in 1986. 

First Academy Award given to a 
computer graphics movie.
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Graphics Acceleration

Next: Back to architecture ...
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The graphics pipeline in hardware (2004)Figure 2-1 Block diagram

167 MHz
MaxBus

12 Mbps
USB

PCI bus

Boot
ROM

USB 2.0 port (480 Mbps)

USB 2.0 port (480 Mbps)

PCI USB 2.0
controller

DDR SDRAM
DIMM slot

32 MB
DDR RAM

DVI/VGA/composite/S-video
output port

Ethernet port
10/100 Mbps

FireWire 400 port

AGP 4X
bus

167 MHz
Memory

bus

 PMU
power controller

Power
button Fan

Optical
drive

Ultra
ATA/100

bus

Device 0

Device 1

Headphone/audio line-out jack

Hard disk
drive

Radeon
9200

graphics IC

Audio
codec

Ethernet
PHY

FireWire
PHY

PowerPC G4
microprocessor

(L2 cache: 512K 1:1)

AirPort Extreme

I2S

I2S

I2C

Bluetooth
Modem port

Modem module

Data pump
and DAA

Built-in
speaker

Intrepid
memory
controller
and I/O
device

controller

Main ICs and Buses

The architecture of Mac mini is designed around the PowerPC G4 microprocessor and the Intrepid
memory and I/O device controller. The Intrepid occupies the center of the block diagram.

The MaxBus connects the PowerPC G4 microprocessor to the Intrepid ASIC. The MaxBus has 64 data
lines, 32 address lines, and a bus clock speed of 167 MHz. The Intrepid ASIC has other buses that
connect with the boot ROM, the hard disk drive, and the optical drive, the power controller IC, the
sound IC, the internal modem module, and the optional wireless LAN module.

The Intrepid I/O controller has a 32-bit PCI bus with a bus clock speed of 33 MHz.

Each of the components listed here is described in one of the following sections.
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connect with the boot ROM, the hard disk drive, and the optical drive, the power controller IC, the
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The Intrepid I/O controller has a 32-bit PCI bus with a bus clock speed of 33 MHz.
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Vertex Shader: A “stream processor”

Shader CPU

Input Registers 
(Read Only)

Vertex “stream” from CPU
Only one vertex at a time 
placed in input registers.

Constant 
Registers 

(Read Only)

From CPU: changes 
slowly (per frame, 

per object)

Output Registers 
(Write Only)

Vertex “stream” 
ready for 3-D to 
2-D conversion

Shader creates 
one vertex out for 
each vertex in.Working 

Registers 
(Read/Write)

Shader 
Program 
Memory

Short 
(ex: 128 instr)
straight-line 
code. 
Same code 
runs on every 
vertex. 
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Optimized instructions and data formats

Input Registers 

From CPU

Output Registers 

Shader CPU Shader 
Program 
Memory

128-bit 
registers, 
holding four 
32-bit floats. 

Typical use: 
(x,y,z,w) 
representation 
of a point in 
3-D
space.

x y z w

x y z w

Typical instruction:

rsq dest src

dest.{x,y,z,w} = 
1.0/sqrt(abs(src.w)).
If src.w=0, dest ∞.

The 1/sqrt() 
function is often 
used in graphics.

To 3-D/2-D 
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Easy to parallelize: Vertices independent

Input Registers 

From CPU

Output Registers 

Shader CPU

x y z w

x y z w

Input Registers 

Output Registers 

Shader CPU

x y z w

x y z w

To 3-D/ 
2-D 

Caveat: 
Care 
might be 
needed 
when 
merging 
streams.

Why?
3-D to 
2-D may 
expect   
triangle 
vertices 
in order 
in the 
stream. 

Shader CPUs 
easy to multithread.
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Pixel shader specializations ...

Process each 
vertex

Create pixels 
fragments

Output Merge
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The MaxBus connects the PowerPC G4 microprocessor to the Intrepid ASIC. The MaxBus has 64 data
lines, 32 address lines, and a bus clock speed of 167 MHz. The Intrepid ASIC has other buses that
connect with the boot ROM, the hard disk drive, and the optical drive, the power controller IC, the
sound IC, the internal modem module, and the optional wireless LAN module.

The Intrepid I/O controller has a 32-bit PCI bus with a bus clock speed of 33 MHz.

Each of the components listed here is described in one of the following sections.
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The architecture of Mac mini is designed around the PowerPC G4 microprocessor and the Intrepid
memory and I/O device controller. The Intrepid occupies the center of the block diagram.

The MaxBus connects the PowerPC G4 microprocessor to the Intrepid ASIC. The MaxBus has 64 data
lines, 32 address lines, and a bus clock speed of 167 MHz. The Intrepid ASIC has other buses that
connect with the boot ROM, the hard disk drive, and the optical drive, the power controller IC, the
sound IC, the internal modem module, and the optional wireless LAN module.

The Intrepid I/O controller has a 32-bit PCI bus with a bus clock speed of 33 MHz.

Each of the components listed here is described in one of the following sections.
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Pixel Shader: Stream processor + Memory
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Example Design: Nvidia GeForce 7900

Vertex 
Shaders: 8
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Shaders:
24

3-D to 2-D
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Merge 
Units

Texture Cache

278 Million Transistors, 650 MHz clock, 90 nm process
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Each of the components listed here is described in one of the following sections.
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Break Time ...

Next: Unified architectures

Play



UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Unified Architectures

Basic idea: Replace specialized logic (vertex 
shader, pixel shader, hardwired algorithms)  
with many copies of one unified CPU design. 

Consequence: You no longer “see” the 
graphics pipeline when you look at 
the architecture block diagram.

Designed for: DirectX 10 (Microsoft Vista), 
and new non-graphics markets for GPUs. 
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throughput by exploiting the natural independence between verti-
ces and between pixels fragments.  Multiple instances of vertex 
and pixel shaders are used to process independent vertices and 
pixel fragments in parallel.  Hardware implementations typically 
include a larger number of pixel shaders than vertex shaders re-
flecting the higher ratio of pixels to vertices in a typical rendering 
workload [Montrym and Moreton 2005].  This characteristic also 
influences the cost of pixel shaders relative to vertex shaders since 
pixel shaders are more heavily replicated. 

The programmable pipeline is directed using a low-level ab-
straction layer such as OpenGL or Direct3D.  The abstraction 
layer serves to hide the differences between varying implementa-
tions of the pipeline and provide a more convenient programming 
abstraction.  Fixed platforms, such as consoles, differ from PCs in 
that there is only one hardware implementation, so often low-level 
details of the hardware are exposed through the abstraction layer.  

We refer to the abstraction layer as a runtime and it is con-
trolled through its API. The runtime provides device independent 
resource management (allocation, lifetime, initialization, virtual-
ization, etc) for texture maps, vertex buffers, and other state and it 
communicates with the hardware accelerator through device-
dependent driver software.  The transition to a programmable 
pipeline has added the task of abstracting and managing shader 
programs to the runtime. 

The limited instruction store of early programmable proces-
sors made the choice of programming in an assembly-like lan-
guage [Gray 2003] both practical and in many cases necessary to 
maximize control of the limited resources.  However, modest 
increases in available hardware resources created a need for a 
higher-level programming abstraction to maximize programmer 
productivity. C-like programming languages with some customi-
zations to match the underlying rendering pipeline (4-vectors, 
intrinsics, I/O registers) answered this need [Proudfoot et al. 2001; 
Microsoft 2002; Mark 2003; Kessenich 2004; McCool and Du 
Toit 2004;]  Additionally, other languages have been developed to 
explore the use of the substantial floating-point processing and 
memory bandwidth of GPUs for application domains other than 

rendering [Buck et al. 2004; McCormick et al. 2004], but we will 
not address this latter subject further in this paper. 

While there are similarities to imperative CPU programming 
languages (notably C), there are some significant departures.  For 
example, the machine and compilation model is more virtual ma-
chine-like, with the shader assembly language serving as a ma-
chine-independent intermediate language (IL) rather than a spe-
cific machine language1. Though a high-level language like Mi-
crosoft’s HLSL can be compiled to IL offline, the translation to 
the target hardware occurs just in time (JIT) at run-time with the 
translator implemented as part of the driver infrastructure for the 
GPU.  We note that the OpenGL Shading Language takes a dif-
ferent approach with the entire compilation process occuring at 
run-time.  

Another significant difference is that shading programs are 
not standalone applications, and are instead executing in concert 
with a program executing on the CPU that orchestrates the render-
ing pipeline.  The CPU program also supplies parameters to the 
shading program in the form of texture maps or by populating on-
chip registers called constants. 

While this paper does not describe a specific hardware em-
bodiment of the new pipeline architecture, the pipeline design is 
shaped significantly by hardware practicalities and was designed 
concurrently with multiple hardware implementations. Many of 
the structural underpinnings from current hardware implementa-
tions [ATI 2005; Doggett 2005; Montrym and Moreton 2005] 
continue to be both relevant and influential in this design. 

Feature   1.1  2001    2.0  2002  3.0  2004†   4.0  2006 

128 256 !512 instruction slots 

4+8‡ 32+64‡
!512 

!64K 

!96 !256 !256 constant regis-

ters 8 32 224 

16x4096 

12 12 32 tmp registers 

2 12 32 

4096 

16 16 16 16 input registers 

4+2§ 8+2§ 10 32 

render targets 1 4 4 8 

samplers 8 16 16 16 

  4 textures 

 8 16 16 

128 

2D tex size   2Kx2K 8Kx8K 

integer ops    ! 

load op    ! 

sample offsets    ! 

! ! ! transcendental 

ops  ! ! 

! 

 

derivative op   ! ! 

 static stat/dyn flow control 

   stat/dyn 

dynamic 

Table 1: Shader model feature comparison summary.  
5
specification released in 2002, hardware in 2004; 

<
texture load > arithmetic 

instructions; 
?
texture > color registers; dashed line separates vertex shader 

(above) from pixel shader (below) 

3. The Pipeline 

The Direct3D 10 pipeline retains the structure of the traditional 
hardware-accelerated 3D pipeline.  Two new stages have been 
added and other stages have been either simplified or further gen-
eralized.  The basic pipeline is illustrated in Figure 1. For consis-
tency we describe each of the pipeline stages, rather than just the 
additions. We use traditional terms such as vertex, texture, and 
pixel for continuity with prior nomenclature, but acknowledge 
that this terminology reflects a specific usage of a more general 
processing capability. 

Input Assembler (IA) gathers 1D vertex data from up to 8 
input streams attached to vertex buffers and converts data items to 
a canonical format (e.g., float32).  Each stream specifies an inde-
pendent vertex structure containing up to 16 fields (called ele-
ments).  An element is a homogenous tuple of 1 to 4 data items 
(e.g., float32s).  A vertex is assembled by reading from the cur-
rently enabled streams.  Normally vertex data is read sequentially 
from each vertex buffer; however, if an index buffer is specified 
then each stream uses a shared index to compute the offset into 
each vertex buffer.   Indexing allows additional performance op-
timizations in that the vertex processor computes a result that is 
completely determined by the index value, therefore recomputa-
tion of results for the same index can be avoided using a result 
cache indexed by the index value.  

The IA also supports a mechanism that allows the IA to effec-
tively replicate an object n times. This mechanism is an address-
ing mode referred to as instancing in which a repeat count n is 
associated with block of k vertices (corresponding to an object).  
At the same time, the primitive data is “tagged” with a current 
instance, primitive, and vertex id and these ids can be accessed in 
the programmable stages to compute values such as transforma-
tions or material parameters based on these ids. 

                                                                 
1 This does contradict the notion that the assembly-level shader program-

mer has absolute control. 

DirectX 10 (Vista): Towards Shader Unity
Earlier APIs: Pixel and Vertex CPUs very different ...

DirectX 
10: 
Many 
specs 
are 
identical 
for 
Pixel 
and 
Vertex 
CPUs
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DirectX 10 : New Pipeline Features ...
 

Vertex Shader (VS) is most commonly used to transform 
vertices from object space to clip space. The VS reads a single 
vertex and produces a single vertex as output.  The VS and other 
programmable stages share a common feature set that includes an 
expanded set of floating-point, integer, control, and memory read 
instructions allowing access to up to 128 memory buffers (tex-
tures) and 16 parameter (constant) buffers. This common core is 
described in more detail in Section 4. 

Geometry Shader (GS) takes the vertices of a single primi-
tive (point, line segment, or triangle) as input and generates the 
vertices of zero or more primitives.  The input and output primi-
tive types need not match, but they are fixed for the shader pro-
gram.   A GS program can amplify the number of input primitives 
by emitting additional primitives subject to a per-invocation limit 
of 1024 32-bit values of vertex data.  Triangles and lines are out-
put as connected strips of vertices. A GS program can output 
more than one strip in a single invocation or it can effectively 
delete an input primitive by not producing an output. A GS pro-
gram can also simply affix additional attributes to a primitive 
without generating additional geometry, for example, computing 
additional uniform-valued attributes for each primitive.  Since all 
of the primitive vertices are available, geometric attributes such as 
a triangle’s plane equation can be readily computed.  

In addition to the traditional input primitives, triangle and line 
primitives may also be processed with their adjacent vertices.  A 
triangle comprises 3 vertices plus 3 adjacent vertices while a line 
has 2 vertices with 2 adjacent vertices as shown in Figure 2.  Ad-
jacent vertices are included as part of the vertex buffer formats for 
triangle and line primitives and are extracted by the IA when a 
primitive topology with adjacency is specified (rendered). 

Stream Output (SO) copies a subset of the vertex informa-
tion output by the GS to up to 4 1D output buffers in sequential 

order.  Ideally the SO should have symmetric output capabilities 
with the (non-indexed) input capabilities of the IA (8 streams x 16 
elements), but the hardware costs were not justified. The SO is 
limited to either 1 multi-element output stream of up to 16 ele-
ments or up to 4 single-element output streams. While the IA can 
support reading from 8- and 16-bit data types and converting to 
float32, the SO can only write raw 32-bit data types.  However, 
data conversion and packing can be easily implemented in a GS 
program reducing the need for fixed-function support. 

Set-up and Rasterization Stage (RS) is a fixed-function 
stage handling clipping, culling, perspective divide, viewport 
transform, primitive set-up, scissoring, depth offset, and fragment 
generation.  Modern GPU designs invariably include some form 
of early depth processing (z-cull, hierarchical-z) [ATI 2005; Mon-
trym and Moreton 2005] as well.  We explicitly mention this op-
timization as it is becoming less transparent to application devel-
opers. The input of the RS is the vertices and attributes of a single 
primitive and the output is a series of pixel fragments.   

The pixel shader program specifies the manner in which ver-
tex attributes are interpolated to produce fragment attributes (no 
interpolation, non-perspective-corrected interpolation, or perspec-
tive-corrected interpolation).  Modern GPUs usually support mul-
tisample antialiasing [Akeley 1993].  Multisampling requires 
additional care in specifying attribute evaluation behavior when a 
fragment does not include the pixel center, since center evaluation 
may result in an out-of-gamut value.  An additional evaluation 
qualifier (centroid) can be specified to request evaluation within 
the fragment boundaries. 

Pixel Shader (PS) reads the attributes of a single pixel frag-
ment and produces a single output fragment consisting of 1 to 8 
attribute (color) values and optionally a depth value.   The attrib-
ute values (elements) are each written to a separate color buffer 
(termed a render target) or the entire result may be discarded (no 
fragment is output).   Normally depth and stencil values are for-
warded from the RS.  However, the PS can replace the depth 
value with a computed value, but not the stencil value.  Both dis-
carding pixels and replacing the depth value may defeat depth-
processing optimizations in the RS since they can change the 
fragment’s visibility. 

 
Figure 1: Direct3D 10 pipeline. 
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Output Merger (OM)2 takes a fragment from the PS and per-
forms traditional stencil and depth testing operations as well as 
render target blending. The OM specifies bind points for a single 
unified depth/stencil buffer and up to 8 other render targets (at-
tribute buffers).  The pixel shader must output a separate value for 
each render target (there is no multicast).  While a single blending 
function is shared across all of the render targets, blending can be 
enabled or disabled independently for each render target. 

DS

DM

DL

'S

'L

'M

DS

DM

'S

'M

Figure 2: Triangle and line segment with ad1acent vertices. 

3.1 Memory Structure and Data Flow 

Modern GPUs rely heavily on processing retained data structures 
in the form of vertex and index buffers, texture maps, render tar-
gets and depth/stencil buffers. GPUs typically store these in a 
high-performance memory system attached directly to the GPU.  
The range of structures includes homogeneous 1D through 3D 

                                                                 
2 Some implementations traditionally refer to this functionality as “ROP” 

for raster operations. 

Geometry 
Shader: 
Lets a 
shader 
program 
create new 
triangles.

Stream 
Output: 
Lets 
vertex 
stream
recirculate 
through 
shaders 
many 
times ...
(and also, 
back to 
CPU)

Also: Shader 
CPUs are more 

like RISC 
machines in 
many ways.
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Why? “Particle Systems” ...Why?  Particle systems ...
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Why?  Fractal images ...
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 GeForce 8800 Architecture in Detail 
    

 

 

Figure 12. GeForce 8800 GTX Block Diagram 
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NVidia 8800: Unified GPU, announced Fall 2006

128 
Shader 
CPUs Streams

loop 
around...

Thread processor sets shader type of each CPU

1.35 GHz Shader CPU Clock, 575 MHz core clock
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 GeForce 8800 Architecture in Detail 
    

 

 

Figure 12. GeForce 8800 GTX Block Diagram 
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Graphics-centric functionality ...
3-D to 2-D (vertex to pixel)

Pixel fragment output merge

Texture 
engine and 
memory 
system
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Can be reconfigured with graphics logic hidden ...

128 scalar 1.35 GHz processors: Integer ALU, 
dual-issue single-precision IEEE floats.

 GeForce 8800 Architecture Overview 
    

 

 

Figure 9. CUDA Thread Computing Pipeline 
CUDA enables new applications with a standard platform for extracting valuable 

information from vast ;uantities of raw data< and provide the following key benefits 

in this area? 

! Enables high density computing to be deployed on standard enterprise 

workstations and server environments for data intensive applications. 

! Divides complex computing tasks into smaller elements that are processed 

simultaneously in the GPU to enable real-time decision making. 

! Provide a standard platform based on industry-leading NVIDIA hardware and 

software for a wide range of high data bandwidth< computationally intensive 

applications. 

! Combines with multi-core CPU systems to provide a flexible computing 

platform. 

! Controls complex programs and coordinates inherently parallel computation on 

the GPU processed by thousands of computing threads. 

 

CUDAHs high performance< scalable computing architecture solves complex parallel 

problems 100x faster than traditional CPU-based architectures? 

! Up to of 12L parallel 1.35GHz compute cores in GeQorce LL00 GTX GPUs 

harness massive floating point processing power enabling maximum application 

performance. 

! Thread computing scales across NVIDIAHs complete line of next generation 

GPUs - from embedded GPUs to high performance GPUs that support 

hundreds of processors. 

! NVIDIA SUIV technology allows multiple GPUs to distribute computing to 

provide unparalleled compute density. 
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Texture system set up to look like a conventional 
memory system (768MB GDDR3, 86 GB/s)

1000s 
of active 
threads

3 TeraFlops Peak Performance 
Ships with a C compiler.
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Chip Facts

90nm process
681M Transistors
80 die/wafer 
(pre-testing)

A big die. Many chips will not work 
(low yield). Low profits.

4 year 
design cycle

Design Facts

$400 Million 
design budget
600 person-years: 10 people at start, 300 at peak
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GeForce 8800 GTX Card: $599 List Price

PCI-Express 16X Card - 2 Aux Power Plugs!

185 Watts Thermal Design Point (TDP) -- 
TDP is a “real-world” maximum power spec.
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Some products are “loss-leaders”

Breakthrough 
product 
creates
“free” 
publicity you 
can’t buy.

(1) Hope: when chip “shrinks” to 65nm fab process, die will 
be smaller, yields will improve, profits will rise.
(2) Simpler versions of the design will be made to create an 
entire product family, some very profitable.
“We tape out a chip a month”,  NVidia CEO quote.
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And it happened! 2008 nVidia products

GTX 280

Price 
similar 
to 
8800, 
stream 
CPU 
count 
> 2X.

9800 
GTX 

Specs 
similar 
to 8800, 
card sells 
for 
$199. 
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And again in 2012!  GTX 680 -- “Kepler”

GTX 
560 Ti 

Specs
better 
than  
GTX 280, 
sells for 
$249

GTX 680

3X more 
effective 
CPUs as 
GTX 280, 
lower price 
point.

6X more 
CPUs as 
8800, 
(from 
2006).
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28nm 
process 

3.5 billion 
transistors

GTX 680

1 GHz 
core clock

6GHz 
GDDR5

3 years, 
1000 
engineers
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5 
 

Kepler Architecture In-Depth (GeForce GTX 680) 
Like Fermi, Kepler GPUs are composed of different configurations of Graphics Processing Clusters 
(GPCs), Streaming Multiprocessors (SMs), and memory controllers. The GeForce GTX 680 GPU consists 
of four GPCs, eight next-generation Streaming Multiprocessors (SMX), and four memory controllers.  

 

Figure 1: GeForce GTX 680 Block Diagram 

GTX 680 

4X as many 
shader CPUs, 
running at 
2/3 the clock 
(vs GTX 560).

Polymorph 
engine does 
polygon 
tessellation. 
PCIe bus no
longer limits 
triangle count.
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History and Graphics Processors

Create standard model from common 
practice:  Wire-frame geometry, 
triangle rasterization, pixel shading.

Put model in hardware: Block diagram of 
chip matches computer graphics math.

Evolve to be programmable: At some 
point, it becomes hard to see the math 
in the block diagram.

“Wheel of reincarnation” -- Hardwired graphics hardware 
evolves to look like general-purpose CPU.  Ivan Sutherland 
co-wrote a paper on this topic in 1968!



UC Regents Spring 2012 © UCBEECS 150: Graphics Processors

Samaritan: Direct X-11 demo from Unreal.
Runs in real-time on one GTX 680 (barely).
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GPUs on mobile devices
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Same ideas, scaled down ...
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iPad: iPhone++
To

p
Bo

tt
om

A5X: 2 ARM Cortex9 Cores, 
expanded PowerVR GPU

Ce
llu

la
r 

RF
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2012 iPad 
CPU/IGP.

Apple A5X

IGP fills 
about 40% 
of die.

45 nm, 
13 x 13 mm 

IGP: 2% 
of Kepler 
(in GFLOPs).
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Today: Graphics Processors

Computer Graphics.  A brief 
introduction to “the pipeline”.

Stream Processing. Casting the 
graphics pipeline into hardware.

Unified Pipelines. GeForce 8800,
from Nvidia, introduced in 2006.

Kepler. The latest generation from 
Nvidia, released last month.


