University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science

EECS150, Spring 2012

Topics for the Midterm Exam

The exam will be closed book/notes and cover material from week 1 through week 8. Problems will be in the style of homework problems, but in some cases more challenging and requiring synthesis of several concepts. A rough outline of important topics follows:

- 1. Introductory Material:
 - Concept of hierarchy in designs and example hierarchies.
 - Concept of cost/performance/power tradeoffs and simple examples.
- 2. Combinational Logic Basics:
 - Function of primitive logic gates.
 - Derivation of truth tables from simple combinational logic circuits.
 - Derivation of gate circuits from logic equations.
 - Derivation of canonical forms.
 - Algebraic manipulation for simplification and equivalence checking.
 - Signal restoration and its importance in digital circuits.
 - Operation and implementation of multiplexers.
- 3. FPGAs:
 - Idealized FPGA architecture model.
 - Details of basic FPGA PIP (programmable interconnection point).
 - LUT implementation details. Hierarchical LUT designs.
 - Partitioning logic circuits into LUTs and CLBs.
 - High-level details of Virtex 5 FPGAs (as presented in class).
- 4. Verilog HDL:
 - Concept of "behavioral" versus "structural" description.
 - Module specification and instantiation.
 - Basics of combinational logic and sequential circuit specification.
 - Continuous assignment versus procedural assignments (both blocking and non-blocking).
 - Specification of Finite State Machines.
 - Use of module parameters and "generate" constructs.

- Basic steps of logic synthesis and examples of how Verilog specifications are converted to circuits.
- Case versus nested If-else.
- Differences between HDL for synthesis and for simulation.
- Techniques for writing test-benches in Verilog.
- 5. State Elements and Sequential Circuits:
 - Basic flip-flop operation. Flip-flop Input/output/clock timing and constraints. Flip-flop reset types and functions.
 - "Register transfer" notion of sequential circuit timing. Waveform diagrams. Pipelining and signal feedback.
 - Level-sensitive latch operation. Implementation of flip-flops using level sensitive latches.
 - Flip-flop operation of Virtex 5 FPGA.
- 6. CPU microarchitecture:
 - Implementation of a single-cycle processor from ISA description.
 - Processor pipelining: impact on performance, hazard types and resolution.
 - Detailed operation of 3-stage MIPS pipeline.
 - Serial communication and UART basics.
 - Memory mapped CPU I/O and polling implementation.
- 7. Physical Design:
 - Chip-level design alternatives and pros and cons of each.
 - Economics of FPGAs versus ASICs.
 - CMOS circuits for basic logic gates, multiplexers, and flip-flops. CMOS transmission gates.
 - Implementation of tri-state buffers and their use for bidirectional communication.
- 8. Memory Blocks:
 - Naming conventions.
 - Internal organization.
 - SRAM Cell implementation.
 - Multiported memory internal organization.
 - Cascading memory blocks to increase width/depth/number of ports.
 - Virtex 5 block-RAM and LUT-RAM details and differences.
 - Operation and implementation of FIFO memories.
 - Principles behind DRAM operation.
- 9. Timing:

- Relation of clock speed to performance.
- Determination of maximum clock frequency from circuit.
- Origin of logic delay.
- Origin of flip-flop delay.
- Wire delay and mitigation.
- Effects of clock skew.
- Principle of flip-flop metastability. Clock synchronization.

10. Video:

- Basics of Video display subsystem, with framebuffer and color map.
- Decoupling CPU framebuffer writes from Video display.
- Line drawing acceleration algorithm operation.