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Verilog Memory Synthesis Notes
• Block RAMS and LUT RAMS all exist as primitive library elements 

(similar to FDRSE) and can be instantiated.  However, it is much 
more convenient to use inference.
– Depending on how you write your verilog, you will get either a 

collection of block RAMs, a collection of LUT RAMs, or a 
collection of flip-flops.

– The synthesizer uses size, and read style (synch versus asynch) 
to determine the best primitive type to use.  

– It is possible to force mapping to a particular primitive by using 
synthesis directives.  However, if you write your verilog 
correctly, you will not need to use directives.

– The synthesizer has limited capabilities (eg., it can combine 
primitives for more depth and width, but is limited on porting 
options).  Be careful, as you might not get what you want.

• Check out “CoreGen” as an alternative.  Creates a custom module 
for instantiation  from a GUI.
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Inferring RAMs in Verilog
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 // 64X1 RAM implementation using distributed RAM

   module ram64X1 (clk, we, d, addr, q);
input clk, we, d;
input [5:0] addr;
output q;

   reg [63:0] temp;
   always @ (posedge clk)

if(we)
   temp[addr] <= d;

   assign q = temp[addr];

   endmodule

Asynchronous read 
infers LUT RAM

Verilog reg array used with 
“always @ (posedge ... infers 

memory array.
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Dual-read-port LUT RAM
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// 
// Multiple-Port RAM Descriptions 
// 
module v_rams_17 (clk, we, wa, ra1, ra2, di, do1, do2); 
    input  clk; 
    input  we; 
    input  [5:0] wa; 
    input  [5:0] ra1; 
    input  [5:0] ra2; 
    input  [15:0] di; 
    output [15:0] do1; 
    output [15:0] do2; 
    reg    [15:0] ram [63:0]; 
    always @(posedge clk) 
    begin 
        if (we) 
            ram[wa] <= di; 
    end 
    assign do1 = ram[ra1]; 
    assign do2 = ram[ra2]; 
endmodule

Multiple reference to 
same array.
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Block RAM Inference

5

// 
// Single-Port RAM with Synchronous Read 
// 
module v_rams_07 (clk, we, a, di, do); 
    input  clk; 
    input  we; 
    input  [5:0] a; 
    input  [15:0] di; 
    output [15:0] do; 
    reg    [15:0] ram [63:0]; 
    reg    [5:0] read_a; 
    always @(posedge clk) begin 
        if (we) 
            ram[a] <= di; 
        read_a <= a;
    end 
    assign do = ram[read_a]; 
endmodule 

Synchronous read 
(registered read address) 

infers Block RAM
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Block RAM initialization
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module RAMB4_S4 (data_out, ADDR, data_in, CLK, WE);
   output[3:0] data_out;
   input [2:0] ADDR;
   input [3:0] data_in;
   input CLK, WE;
   reg [3:0] mem [7:0];
   reg [3:0] read_addr;

   initial
     begin
       $readmemb("data.dat", mem);
     end
   
   always@(posedge CLK)
     read_addr <= ADDR;

   assign data_out = mem[read_addr];

   always @(posedge CLK)
     if (WE) mem[ADDR] = data_in;

   endmodule

“data.dat” contains initial RAM 
contents, it gets put into the bitfile 
and loaded at configuration time.  
(Remake bits to change contents)
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Dual-Port Block RAM
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module test (data0,data1,waddr0,waddr1,we0,we1,clk0, clk1, q0, q1);

   parameter d_width = 8;  parameter addr_width = 8; parameter mem_depth = 256;

   input [d_width-1:0] data0, data1;
   input [addr_width-1:0] waddr0, waddr1;
   input we0, we1, clk0, clk1;

   reg [d_width-1:0] mem [mem_depth-1:0]
   reg [addr_width-1:0] reg_waddr0, reg_waddr1;
   output [d_width-1:0] q0, q1;

   assign q0 = mem[reg_waddr0];
   assign q1 = mem[reg_waddr1];

   always @(posedge clk0)
     begin
       if (we0)
         mem[waddr0] <= data0;
         reg_waddr0 <= waddr0;
     end

   always @(posedge clk1)
     begin
       if (we1)
         mem[waddr1] <= data1;
         reg_waddr1 <= waddr1;
     end

   endmodule
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First-in-first-out (FIFO) Memory
• Used to implement queues.  
• These find common use in 

computers and communication 
circuits.

• Generally, used to “decouple” 
actions of producer and consumer:

• Producer can perform many writes 
without consumer performing any 
reads (or vis versa).   However, 
because of finite buffer size, on 
average, need equal number of 
reads and writes.

• Typical uses: 
– interfacing I/O devices.  

Example network interface.  
Data bursts from network, then 
processor bursts to memory 
buffer (or reads one word at a 
time from interface).  
Operations not synchronized.

– Example: Audio output.  
Processor produces output 
samples in bursts (during 
process swap-in time).  Audio 
DAC clocks it out at constant 
sample rate.

stating state

after write

after read

abc

abcd

bcd
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FIFO Interfaces

• After write or read operation, FULL 
and EMPTY indicate status of buffer.

• Used by external logic to control own 
reading from or writing to the buffer.

• FIFO resets to EMPTY state.
• HALF FULL (or other indicator of 

partial fullness) is optional.

• Address pointers are used internally 
to keep next write position and next 
read position into a dual-port 
memory.

• If pointers equal after write ⇒ FULL:

• If pointers equal after read ⇒ EMPTY:

DIN

DOUT

WE

RE
EMPTY

FULL
HALF FULL

RST CLK

FIFO
write ptr

read ptr

write ptr read ptr

write ptr read ptr
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FIFO Implementation Details

  WE RE equal     EMPTYi     FULLi

       0  0      0         0            0
       0  0      1      EMPTYi-1   FULLi-1

          0  1      0          0            0
                    0  1      1           1            0
                    1  0      0          0            0
                    1  0      1           0            1
                    1  1      0           0            0

• Assume, dual-port memory with asynchronous read, 
synchronous write.

• Binary counter for each of read and write address.  
CEs (count enable) controlled by WE and RE.

• Equal comparator to see when pointers match.
• Flip-flop each for FULL and EMPTY flags:
 
 • Control logic (FSM) with 

truth-table shown to left.
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Xilinx Virtex5 FIFOs
• Virtex5 BlockRAMS include dedicated circuits for FIFOs.
• Details in User Guide (ug190).
• Takes advantage of separate dual ports and independent ports 

clocks.
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Processor Design Considerations (1/2)
• Register File: Consider distributed RAM (LUT RAM)

– Size is close to what is needed:  distributed RAM primitive 
configurations are 32 or 64 bits deep.  Extra width is easily 
achieved by parallel arrangements.

– LUT-RAM configurations offer multi-porting options - useful for 
register files.

– Asynchronous read, might be useful by providing flexibility on where 
to put register read in the pipeline.

• Instruction / Data Caches : Consider Block RAM
– Higher density, lower cost for large number of bits
– A single 36kbit Block RAM implements 1K 32-bit words.
– Configuration stream based initialization, permits a simple “boot 

strap” procedure.
• Other Memories in Project? Video?
• Main memory will be in external DRAM
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XUP Board External SRAM
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More generally, how does software 
interface to I/O devices?

*ZBT (ZBT stands for zero bus 
turnaround) — the turnaround is 
the number of clock cycles it 
takes to change access to the 
SRAM from write to read and 
vice versa. The turnaround for 
ZBT SRAMs or the latency 
between read and write cycle is 
zero.

“ZBT” synchronous 
SRAM, 9 Mb on 
32-bit data bus, 
with four “parity” 
bits
256K x 36 bits
(located under the 
removable LCD)
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XUP Board External DRAM
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More generally, how does software 
interface to I/O devices?

*SO-DIMM  stands for small 
outline dual in-line memory 
module.  SO-DIMMS are often 
used in systems which have space 
restrictions such as notebooks.
*DDR2 stands for second 
generation double data rate.  
DDR transfers data both on the 
rising and falling edges of the 
clock signal.

256 MByte DDR2 
DRAM with 
400MHz data rate.
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Recall: Levels of the Memory Hierarchy

CPU Registers

Cache

Main Memory

Disk

Capacity
Access Time
Cost

Tape/CD

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger
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Review from  61C

° Two Different Types of Locality:
• Temporal Locality (Locality in Time): If an item is referenced, it will 

tend to be referenced again soon.
• Spatial Locality (Locality in Space): If an item is referenced, items 

whose addresses are close by tend to be referenced soon.

° By taking advantage of the principle of locality:
• Present the user with as much memory as is available in the 

cheapest technology.
• Provide access at the speed offered by the fastest technology.

° DRAM is slow but cheap and dense:
• Good choice for presenting the user with a BIG memory system

° SRAM is fast but expensive and not very dense:
• Good choice for providing the user FAST access time.
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Example: 1 KB Direct Mapped Cache with 32 B Blocks

° For a 2N byte cache:
• The uppermost (32 - N) bits are always the Cache Tag
• The lowest M bits are the Byte Select (Block Size = 2M)

Cache Index

0
1
2
3

:

 Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

 Cache Tag

Byte Select
Ex: 0x00

9
Block address

17



Spring 2012 EECS150 - Lec11-sram2 Page 

Block Size Tradeoff

° In general, larger block size take advantage of spatial 
locality BUT:

• Larger block size means larger miss penalty:
- Takes longer time to fill up the block

• If block size is too big relative to cache size, miss rate will go up
- Too few cache blocks

° In general, Average Access Time: 
= Hit Time x (1 - Miss Rate)  +  Miss Penalty x Miss Rate

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks: 
compromises
temporal locality

Average
Access

Time

Increased Miss Penalty
& Miss Rate

Block Size Block Size
18
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Extreme Example: single line

° Cache Size = 4 bytes   Block Size = 4 
bytes

• Only ONE entry in the cache

° If an item is accessed, likely  that it will be accessed 
again soon

• But it is unlikely that it will be accessed again immediately!!!
• The next access will likely to be a miss again

- Continually loading data into the cache but
discard (force out) them before they are used again

- Worst nightmare of a cache designer: Ping Pong Effect

° Conflict Misses are misses caused by:
• Different memory locations  mapped to the same cache index

- Solution 1: make the cache size bigger 
- Solution 2: Multiple entries for the same Cache Index

0
 Cache DataValid Bit

Byte 0Byte 1Byte 3
 Cache Tag

Byte 2

19
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Another Extreme Example: Fully Associative

° Fully Associative Cache
• Forget about the Cache Index
• Compare the Cache Tags of  all cache entries in parallel
• Example: Block Size = 32 B blocks, we need N 27-bit comparators

° By definition: Conflict Miss = 0 for a fully associative 
cache

:

 Cache Data
Byte 0

0431

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

 Cache Tag

Byte Select
Ex: 0x01

=

=
=

=

=
20
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Set Associative Cache

° N-way set associative: N entries for each Cache Index
• N direct mapped caches operates in parallel

° Example: Two-way set associative cache
• Cache Index selects a “set” from the cache
• The two tags in the set are compared to the input in parallel
• Data is selected based on the tag result

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit 21
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Disadvantage of Set Associative Cache

° N-way Set Associative Cache versus Direct Mapped 
Cache:

• N comparators vs. 1
• Extra MUX delay for the data
• Data comes AFTER Hit/Miss decision and set selection

° In a direct mapped cache, Cache Block is available 
BEFORE Hit/Miss:

• Possible to assume a hit and continue.  Recover later if miss.

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit
22
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A Summary on Sources of Cache Misses

° Compulsory (cold start or process migration, first 
reference): first access to a block

• “Cold” fact of life: not a whole lot you can do about it
• Note: If you are going to run “billions” of instruction, 

Compulsory Misses are insignificant

° Conflict (collision):
• Multiple  memory locations  mapped

to the same cache location
• Solution 1: increase  cache size
• Solution 2: increase associativity

° Capacity:
• Cache cannot contain all blocks access by the program
• Solution: increase cache size

° Invalidation: other process (e.g., I/O) updates 
memory 

23
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Cache Misses

24
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How Do you Design a Cache?

° Set of Operations that must be supported
• read:  data <= Mem[Physical Address]
• write: Mem[Physical Address] <= Data

° Determine the internal register transfers
° Design the Datapath
° Design the Cache Controller

Physical Address

Read/Write

Data

Memory
“Black Box”

Inside it has:
Tag-Data Storage,
Muxes,
Comparators, . . .

Cache
Controller

Cache
DataPathAddress

Data In
Data Out

R/W
Active

Control
Points

Signals
wait
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Improving Cache Performance: 3 general options

1. Reduce the miss rate, 
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache (although for 

us and often this is 1 cycle). 

Performance = Intr. Count x Clock Freq x (ideal CPI + stalls)

Average Memory Access time = 
Hit Time + Miss Rate x Miss Penalty

26
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4 Questions for Caches and Memory Hierarchy

° Q1: Where can a block be placed in the upper 
level? (Block placement)

° Q2: How is a block found if it is in the upper level?
 (Block identification)

° Q3: Which block should be replaced on a miss? 
(Block replacement)

° Q4: What happens on a write? 
(Write strategy)

27
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Q1: Where can a block be placed in the upper level? 

° Block 12 placed in 8 block cache:
• Fully associative, direct mapped, 2-way set associative
• S.A. Mapping = Block Number Modulo Number Sets

0 1 2 3 4 5 6 7Block
no.

Fully associative:
block 12 can go 
anywhere

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go 
only into block 4 
(12 mod 8)

0 1 2 3 4 5 6 7Block
no.

Set associative:
block 12 can go 
anywhere in set 0 
(12 mod 4)

Set
0

Set
1

Set
2

Set
3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block-frame address

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

28
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Q2: How is a block found if it is in the upper level?

° Direct indexing (using index and block offset), tag 
compares, or combination

° Increasing associativity shrinks index, expands tag

Block
offset

Block Address
Tag Index

29
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Q3: Which block should be replaced on a miss?

° Easy for Direct Mapped
° Set Associative or Fully Associative:

• Random
• LRU (Least Recently Used)

Associativity:  2-way  4-way  8-way
Size LRU  Random  LRU  Random  LRU  Random
16 KB 5.2% 5.7%     4.7% 5.3%      4.4% 5.0%
64 KB 1.9% 2.0%     1.5% 1.7%      1.4% 1.5%
256 KB 1.15% 1.17%    1.13%   1.13%   1.12%   1.12%
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Q4: What happens on a write?

° Write through—The information is written to both 
the block in the cache and to the block in the lower-
level memory.

° Write back—The information is written only to the 
block in the cache. The modified cache block is 
written to main memory only when it is replaced.

• is block clean or dirty?

° Pros and Cons of each?
• WT: read misses cannot result in writes
• WB: no writes of repeated writes (saves energy)

° WT always combined with write buffers so that 
don’t wait for lower level memory
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Write Buffer for Write Through

° A Write Buffer is needed between the Cache and 
Memory

• Processor: writes data into the cache and the write buffer
• Memory controller: write contents of the buffer to memory

° Write buffer is just a FIFO:
• Typical number of entries: 4
• Works fine if:  Store frequency (w.r.t. time) << 1 / DRAM write cycle

° Memory system designer’s nightmare:
• Store frequency (w.r.t. time) >  1 / DRAM write cycle
• Write buffer saturation

Processor
Cache

Write Buffer

DRAM

32
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Write Buffer Saturation

° Store frequency (w.r.t. time) >  1 / DRAM write cycle
• If this condition exist for a long period of time (CPU cycle time too 

quick and/or too many store instructions in a row):
- Store buffer will overflow no matter how big you make it
- The CPU Cycle Time   <=  DRAM Write Cycle Time

° Solution for write buffer saturation:
• Use a write back cache
• Install a second level (L2) cache: (does this always work?)

Processor
Cache

Write Buffer

DRAM

Processor
Cache

Write Buffer

DRAML2
Cache
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Write-miss Policy: Write Allocate versus Not Allocate

° Assume: a 16-bit write to memory location 0x0 and 
causes a miss

• Do we read in the block?
- Yes: Write Allocate
- No: Write Not Allocate

Cache Index

0
1
2
3

:

 Cache Data
Byte 0

0431

:

Cache Tag Example: 0x00
Ex: 0x00

0x50
Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

 Cache Tag

Byte Select
Ex: 0x00

9
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