
Spring 2012 EECS150 - Lec11-sram2 Page

EECS150 - Digital Design
Lecture 11 - SRAM 2, Caches

Feb 21, 2012
John Wawrzynek

1

Spring 2012 EECS150 - Lec11-sram2 Page

Verilog Memory Synthesis Notes
• Block RAMS and LUT RAMS all exist as primitive library elements

(similar to FDRSE) and can be instantiated. However, it is much
more convenient to use inference.
– Depending on how you write your verilog, you will get either a

collection of block RAMs, a collection of LUT RAMs, or a
collection of flip-flops.

– The synthesizer uses size, and read style (synch versus asynch)
to determine the best primitive type to use.

– It is possible to force mapping to a particular primitive by using
synthesis directives. However, if you write your verilog
correctly, you will not need to use directives.

– The synthesizer has limited capabilities (eg., it can combine
primitives for more depth and width, but is limited on porting
options). Be careful, as you might not get what you want.

• Check out “CoreGen” as an alternative. Creates a custom module
for instantiation from a GUI.

2

Spring 2012 EECS150 - Lec11-sram2 Page

Inferring RAMs in Verilog

3

 // 64X1 RAM implementation using distributed RAM

 module ram64X1 (clk, we, d, addr, q);
input clk, we, d;
input [5:0] addr;
output q;

 reg [63:0] temp;
 always @ (posedge clk)

if(we)
 temp[addr] <= d;

 assign q = temp[addr];

 endmodule

Asynchronous read
infers LUT RAM

Verilog reg array used with
“always @ (posedge ... infers

memory array.

Spring 2012 EECS150 - Lec11-sram2 Page

Dual-read-port LUT RAM

4

//
// Multiple-Port RAM Descriptions
//
module v_rams_17 (clk, we, wa, ra1, ra2, di, do1, do2);
 input clk;
 input we;
 input [5:0] wa;
 input [5:0] ra1;
 input [5:0] ra2;
 input [15:0] di;
 output [15:0] do1;
 output [15:0] do2;
 reg [15:0] ram [63:0];
 always @(posedge clk)
 begin
 if (we)
 ram[wa] <= di;
 end
 assign do1 = ram[ra1];
 assign do2 = ram[ra2];
endmodule

Multiple reference to
same array.

Spring 2012 EECS150 - Lec11-sram2 Page

Block RAM Inference

5

//
// Single-Port RAM with Synchronous Read
//
module v_rams_07 (clk, we, a, di, do);
 input clk;
 input we;
 input [5:0] a;
 input [15:0] di;
 output [15:0] do;
 reg [15:0] ram [63:0];
 reg [5:0] read_a;
 always @(posedge clk) begin
 if (we)
 ram[a] <= di;
 read_a <= a;
 end
 assign do = ram[read_a];
endmodule

Synchronous read
(registered read address)

infers Block RAM

Spring 2012 EECS150 - Lec11-sram2 Page

Block RAM initialization

6

module RAMB4_S4 (data_out, ADDR, data_in, CLK, WE);
 output[3:0] data_out;
 input [2:0] ADDR;
 input [3:0] data_in;
 input CLK, WE;
 reg [3:0] mem [7:0];
 reg [3:0] read_addr;

 initial
 begin
 $readmemb("data.dat", mem);
 end

 always@(posedge CLK)
 read_addr <= ADDR;

 assign data_out = mem[read_addr];

 always @(posedge CLK)
 if (WE) mem[ADDR] = data_in;

 endmodule

“data.dat” contains initial RAM
contents, it gets put into the bitfile
and loaded at configuration time.
(Remake bits to change contents)

Spring 2012 EECS150 - Lec11-sram2 Page

Dual-Port Block RAM

7

module test (data0,data1,waddr0,waddr1,we0,we1,clk0, clk1, q0, q1);

 parameter d_width = 8; parameter addr_width = 8; parameter mem_depth = 256;

 input [d_width-1:0] data0, data1;
 input [addr_width-1:0] waddr0, waddr1;
 input we0, we1, clk0, clk1;

 reg [d_width-1:0] mem [mem_depth-1:0]
 reg [addr_width-1:0] reg_waddr0, reg_waddr1;
 output [d_width-1:0] q0, q1;

 assign q0 = mem[reg_waddr0];
 assign q1 = mem[reg_waddr1];

 always @(posedge clk0)
 begin
 if (we0)
 mem[waddr0] <= data0;
 reg_waddr0 <= waddr0;
 end

 always @(posedge clk1)
 begin
 if (we1)
 mem[waddr1] <= data1;
 reg_waddr1 <= waddr1;
 end

 endmodule

Spring 2012 EECS150 - Lec11-sram2 Page

First-in-first-out (FIFO) Memory
• Used to implement queues.
• These find common use in

computers and communication
circuits.

• Generally, used to “decouple”
actions of producer and consumer:

• Producer can perform many writes
without consumer performing any
reads (or vis versa). However,
because of finite buffer size, on
average, need equal number of
reads and writes.

• Typical uses:
– interfacing I/O devices.

Example network interface.
Data bursts from network, then
processor bursts to memory
buffer (or reads one word at a
time from interface).
Operations not synchronized.

– Example: Audio output.
Processor produces output
samples in bursts (during
process swap-in time). Audio
DAC clocks it out at constant
sample rate.

stating state

after write

after read

abc

abcd

bcd

8

Spring 2012 EECS150 - Lec11-sram2 Page

FIFO Interfaces

• After write or read operation, FULL
and EMPTY indicate status of buffer.

• Used by external logic to control own
reading from or writing to the buffer.

• FIFO resets to EMPTY state.
• HALF FULL (or other indicator of

partial fullness) is optional.

• Address pointers are used internally
to keep next write position and next
read position into a dual-port
memory.

• If pointers equal after write ⇒ FULL:

• If pointers equal after read ⇒ EMPTY:

DIN

DOUT

WE

RE
EMPTY

FULL
HALF FULL

RST CLK

FIFO
write ptr

read ptr

write ptr read ptr

write ptr read ptr

9

Spring 2012 EECS150 - Lec11-sram2 Page

FIFO Implementation Details

 WE RE equal EMPTYi FULLi

 0 0 0 0 0
 0 0 1 EMPTYi-1 FULLi-1

 0 1 0 0 0
 0 1 1 1 0
 1 0 0 0 0
 1 0 1 0 1
 1 1 0 0 0

• Assume, dual-port memory with asynchronous read,
synchronous write.

• Binary counter for each of read and write address.
CEs (count enable) controlled by WE and RE.

• Equal comparator to see when pointers match.
• Flip-flop each for FULL and EMPTY flags:

 • Control logic (FSM) with

truth-table shown to left.

10

Spring 2012 EECS150 - Lec11-sram2 Page

Xilinx Virtex5 FIFOs
• Virtex5 BlockRAMS include dedicated circuits for FIFOs.
• Details in User Guide (ug190).
• Takes advantage of separate dual ports and independent ports

clocks.

11

Spring 2012 EECS150 - Lec11-sram2 Page

Processor Design Considerations (1/2)
• Register File: Consider distributed RAM (LUT RAM)

– Size is close to what is needed: distributed RAM primitive
configurations are 32 or 64 bits deep. Extra width is easily
achieved by parallel arrangements.

– LUT-RAM configurations offer multi-porting options - useful for
register files.

– Asynchronous read, might be useful by providing flexibility on where
to put register read in the pipeline.

• Instruction / Data Caches : Consider Block RAM
– Higher density, lower cost for large number of bits
– A single 36kbit Block RAM implements 1K 32-bit words.
– Configuration stream based initialization, permits a simple “boot

strap” procedure.
• Other Memories in Project? Video?
• Main memory will be in external DRAM

12

Spring 2012 EECS150 - Lec11-sram2 Page

XUP Board External SRAM

13

More generally, how does software
interface to I/O devices?

*ZBT (ZBT stands for zero bus
turnaround) — the turnaround is
the number of clock cycles it
takes to change access to the
SRAM from write to read and
vice versa. The turnaround for
ZBT SRAMs or the latency
between read and write cycle is
zero.

“ZBT” synchronous
SRAM, 9 Mb on
32-bit data bus,
with four “parity”
bits
256K x 36 bits
(located under the
removable LCD)

Spring 2012 EECS150 - Lec11-sram2 Page

XUP Board External DRAM

14

More generally, how does software
interface to I/O devices?

*SO-DIMM stands for small
outline dual in-line memory
module. SO-DIMMS are often
used in systems which have space
restrictions such as notebooks.
*DDR2 stands for second
generation double data rate.
DDR transfers data both on the
rising and falling edges of the
clock signal.

256 MByte DDR2
DRAM with
400MHz data rate.

Spring 2012 EECS150 - Lec11-sram2 Page

Recall: Levels of the Memory Hierarchy

CPU Registers

Cache

Main Memory

Disk

Capacity
Access Time
Cost

Tape/CD

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

15

Spring 2012 EECS150 - Lec11-sram2 Page

Review from 61C

° Two Different Types of Locality:
• Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon.
• Spatial Locality (Locality in Space): If an item is referenced, items

whose addresses are close by tend to be referenced soon.

° By taking advantage of the principle of locality:
• Present the user with as much memory as is available in the

cheapest technology.
• Provide access at the speed offered by the fastest technology.

° DRAM is slow but cheap and dense:
• Good choice for presenting the user with a BIG memory system

° SRAM is fast but expensive and not very dense:
• Good choice for providing the user FAST access time.

16

Spring 2012 EECS150 - Lec11-sram2 Page

Example: 1 KB Direct Mapped Cache with 32 B Blocks

° For a 2N byte cache:
• The uppermost (32 - N) bits are always the Cache Tag
• The lowest M bits are the Byte Select (Block Size = 2M)

Cache Index

0
1
2
3

:

 Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

 Cache Tag

Byte Select
Ex: 0x00

9
Block address

17

Spring 2012 EECS150 - Lec11-sram2 Page

Block Size Tradeoff

° In general, larger block size take advantage of spatial
locality BUT:

• Larger block size means larger miss penalty:
- Takes longer time to fill up the block

• If block size is too big relative to cache size, miss rate will go up
- Too few cache blocks

° In general, Average Access Time:
= Hit Time x (1 - Miss Rate) + Miss Penalty x Miss Rate

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Average
Access

Time

Increased Miss Penalty
& Miss Rate

Block Size Block Size
18

Spring 2012 EECS150 - Lec11-sram2 Page

Extreme Example: single line

° Cache Size = 4 bytes Block Size = 4
bytes

• Only ONE entry in the cache

° If an item is accessed, likely that it will be accessed
again soon

• But it is unlikely that it will be accessed again immediately!!!
• The next access will likely to be a miss again

- Continually loading data into the cache but
discard (force out) them before they are used again

- Worst nightmare of a cache designer: Ping Pong Effect

° Conflict Misses are misses caused by:
• Different memory locations mapped to the same cache index

- Solution 1: make the cache size bigger
- Solution 2: Multiple entries for the same Cache Index

0
 Cache DataValid Bit

Byte 0Byte 1Byte 3
 Cache Tag

Byte 2

19

Spring 2012 EECS150 - Lec11-sram2 Page

Another Extreme Example: Fully Associative

° Fully Associative Cache
• Forget about the Cache Index
• Compare the Cache Tags of all cache entries in parallel
• Example: Block Size = 32 B blocks, we need N 27-bit comparators

° By definition: Conflict Miss = 0 for a fully associative
cache

:

 Cache Data
Byte 0

0431

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

 Cache Tag

Byte Select
Ex: 0x01

=

=
=

=

=
20

Spring 2012 EECS150 - Lec11-sram2 Page

Set Associative Cache

° N-way set associative: N entries for each Cache Index
• N direct mapped caches operates in parallel

° Example: Two-way set associative cache
• Cache Index selects a “set” from the cache
• The two tags in the set are compared to the input in parallel
• Data is selected based on the tag result

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit 21

Spring 2012 EECS150 - Lec11-sram2 Page

Disadvantage of Set Associative Cache

° N-way Set Associative Cache versus Direct Mapped
Cache:

• N comparators vs. 1
• Extra MUX delay for the data
• Data comes AFTER Hit/Miss decision and set selection

° In a direct mapped cache, Cache Block is available
BEFORE Hit/Miss:

• Possible to assume a hit and continue. Recover later if miss.

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit
22

Spring 2012 EECS150 - Lec11-sram2 Page

A Summary on Sources of Cache Misses

° Compulsory (cold start or process migration, first
reference): first access to a block

• “Cold” fact of life: not a whole lot you can do about it
• Note: If you are going to run “billions” of instruction,

Compulsory Misses are insignificant

° Conflict (collision):
• Multiple memory locations mapped

to the same cache location
• Solution 1: increase cache size
• Solution 2: increase associativity

° Capacity:
• Cache cannot contain all blocks access by the program
• Solution: increase cache size

° Invalidation: other process (e.g., I/O) updates
memory

23

Spring 2012 EECS150 - Lec11-sram2 Page

Cache Misses

24

Spring 2012 EECS150 - Lec11-sram2 Page

How Do you Design a Cache?

° Set of Operations that must be supported
• read: data <= Mem[Physical Address]
• write: Mem[Physical Address] <= Data

° Determine the internal register transfers
° Design the Datapath
° Design the Cache Controller

Physical Address

Read/Write

Data

Memory
“Black Box”

Inside it has:
Tag-Data Storage,
Muxes,
Comparators, . . .

Cache
Controller

Cache
DataPathAddress

Data In
Data Out

R/W
Active

Control
Points

Signals
wait

25

Spring 2012 EECS150 - Lec11-sram2 Page

Improving Cache Performance: 3 general options

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache (although for

us and often this is 1 cycle).

Performance = Intr. Count x Clock Freq x (ideal CPI + stalls)

Average Memory Access time =
Hit Time + Miss Rate x Miss Penalty

26

Spring 2012 EECS150 - Lec11-sram2 Page

4 Questions for Caches and Memory Hierarchy

° Q1: Where can a block be placed in the upper
level? (Block placement)

° Q2: How is a block found if it is in the upper level?
 (Block identification)

° Q3: Which block should be replaced on a miss?
(Block replacement)

° Q4: What happens on a write?
(Write strategy)

27

Spring 2012 EECS150 - Lec11-sram2 Page

Q1: Where can a block be placed in the upper level?

° Block 12 placed in 8 block cache:
• Fully associative, direct mapped, 2-way set associative
• S.A. Mapping = Block Number Modulo Number Sets

0 1 2 3 4 5 6 7Block
no.

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

0 1 2 3 4 5 6 7Block
no.

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

Set
0

Set
1

Set
2

Set
3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block-frame address

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

28

Spring 2012 EECS150 - Lec11-sram2 Page

Q2: How is a block found if it is in the upper level?

° Direct indexing (using index and block offset), tag
compares, or combination

° Increasing associativity shrinks index, expands tag

Block
offset

Block Address
Tag Index

29

Spring 2012 EECS150 - Lec11-sram2 Page

Q3: Which block should be replaced on a miss?

° Easy for Direct Mapped
° Set Associative or Fully Associative:

• Random
• LRU (Least Recently Used)

Associativity: 2-way 4-way 8-way
Size LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

30

Spring 2012 EECS150 - Lec11-sram2 Page

Q4: What happens on a write?

° Write through—The information is written to both
the block in the cache and to the block in the lower-
level memory.

° Write back—The information is written only to the
block in the cache. The modified cache block is
written to main memory only when it is replaced.

• is block clean or dirty?

° Pros and Cons of each?
• WT: read misses cannot result in writes
• WB: no writes of repeated writes (saves energy)

° WT always combined with write buffers so that
don’t wait for lower level memory

31

Spring 2012 EECS150 - Lec11-sram2 Page

Write Buffer for Write Through

° A Write Buffer is needed between the Cache and
Memory

• Processor: writes data into the cache and the write buffer
• Memory controller: write contents of the buffer to memory

° Write buffer is just a FIFO:
• Typical number of entries: 4
• Works fine if: Store frequency (w.r.t. time) << 1 / DRAM write cycle

° Memory system designer’s nightmare:
• Store frequency (w.r.t. time) > 1 / DRAM write cycle
• Write buffer saturation

Processor
Cache

Write Buffer

DRAM

32

Spring 2012 EECS150 - Lec11-sram2 Page

Write Buffer Saturation

° Store frequency (w.r.t. time) > 1 / DRAM write cycle
• If this condition exist for a long period of time (CPU cycle time too

quick and/or too many store instructions in a row):
- Store buffer will overflow no matter how big you make it
- The CPU Cycle Time <= DRAM Write Cycle Time

° Solution for write buffer saturation:
• Use a write back cache
• Install a second level (L2) cache: (does this always work?)

Processor
Cache

Write Buffer

DRAM

Processor
Cache

Write Buffer

DRAML2
Cache

33

Spring 2012 EECS150 - Lec11-sram2 Page

Write-miss Policy: Write Allocate versus Not Allocate

° Assume: a 16-bit write to memory location 0x0 and
causes a miss

• Do we read in the block?
- Yes: Write Allocate
- No: Write Not Allocate

Cache Index

0
1
2
3

:

 Cache Data
Byte 0

0431

:

Cache Tag Example: 0x00
Ex: 0x00

0x50
Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

 Cache Tag

Byte Select
Ex: 0x00

9

34

