
● Load hit store: A younger load that executes before an
older store to the same memory location has written its
data to the caches must retrieve the data from the SDQ.
As loads execute, they check the SRQ to see whether
there is any older store to the same memory location
with data in the SDQ. If one is found, the data is
forwarded from the SDQ rather than from the cache. If
the data cannot be forwarded (as is the case if the load
and store instructions operate on overlapping memory
locations and the load data is not the same as or
contained within the store data), the group containing
the load instruction is flushed; that is, it and all younger
groups are discarded and refetched from the instruction
cache. If we can tell that there is an older store
instruction that will write to the same memory location
but has yet to write its result to the SDQ, the load
instruction is rejected and reissued, again waiting for
the store instruction to execute.

● Store hit load: If a younger load instruction executes
before we have had a chance to recognize that an older
store will be writing to the same memory location, the
load instruction has received stale data. To guard
against this, as a store instruction executes it checks the
LRQ; if it finds a younger load that has executed and
loaded from memory locations to which the store is
writing, the group containing the load instruction and
all younger groups are flushed and refetched from the
instruction cache. To simplify the logic, all groups
following the store are flushed. If the offending load is
in the same group as the store instruction, the group is
flushed, and all instructions in the group form single-
instruction groups.

● Load hit load: Two loads to the same memory location
must observe the memory reference order and prevent
a store to the memory location from another processor
between the intervening loads. If the younger load
obtains old data, the older load must not obtain
new data. This requirement is called sequential load
consistency. To guard against this, LRQ entries for all
loads include a bit which, if set, indicates that a snoop
has occurred to the line containing the loaded data
for that entry. When a load instruction executes, it
compares its load address against all addresses in the
LRQ. A match against a younger entry which has been
snooped indicates that a sequential load consistency
problem exists. To simplify the logic, all groups
following the older load instruction are flushed. If both
load instructions are in the same group, the flush
request is for the group itself. In this case, each
instruction in the group when refetched forms a single-
instruction group in order to avoid this situation the
second time around.

Instruction execution pipeline
Figure 4 shows the POWER4 instruction execution
pipeline for the various pipelines. The IF, IC, and BP
cycles correspond to the instruction-fetching and branch-
prediction cycles. The D0 through GD cycles are the
cycles during which instruction decode and group
formation occur. The MP cycle is the mapper cycle,
in which all dependencies are determined, resources
assigned, and the group dispatched into the appropriate
issue queues. During the ISS cycle, the IOP is issued to
the appropriate execution unit, reads the appropriate

Figure 4
POWER4 instruction execution pipeline.

EA DC WB

MP ISS RF EX WB

MP ISS RF

MP ISS RF

F6

MP ISS RF

CP

LD/ST

FX

FP

WB

Fmt

D0

ICIF BP

EXD1 D2 D3 Xfer

Xfer

Xfer

GD

Branch redirects

Instruction fetch

Xfer

Xfer

BR

WB

Out-of-order processing

Instruction crack and
group formation

Interrupts and flushes

IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002 J. M. TENDLER ET AL.

13


