
Applications

al
vi

nn
do

du
c

eq
nt

ot
t

es
pr

es
so

fp
pp

p
hy

dr
o2

d li
m

dl
jd

p2
m

dl
jsp

2
na

sa
7

or
a

su
2c

or
sw

m
to

m
ca

tv

100

90

80

70

60

50

40

30

20

10

0

co
m

po
sit

e

itlb miss
dtlb miss

dcache miss

processor busy

icache miss

branch misprediction
control hazards
load delays
short integer
long integer
short fp
long fp
memory conflict

Pe
rc

en
t o

f T
ot

al
 Is

su
e C

yc
le

s

Figure 2: Sources of all unused issue cycles in an 8-issue superscalar processor. Processor busy represents the utilized issue slots; all
others represent wasted issue slots.

such as an I tlb miss and an I cache miss, the wasted cycles are
divided up appropriately. Table 3 specifies all possible sources
of wasted cycles in our model, and some of the latency-hiding or
latency-reducing techniques that might apply to them. Previous
work [32, 5, 18], in contrast, quantified some of these same effects
by removing barriers to parallelism and measuring the resulting
increases in performance.

Our results, shown in Figure 2, demonstrate that the functional
units of our wide superscalar processor are highly underutilized.
From the composite results bar on the far right, we see a utilization
of only 19% (the “processor busy” component of the composite bar
of Figure 2), which represents an average execution of less than 1.5
instructions per cycle on our 8-issue machine.

These results also indicate that there is no dominant source of
wasted issue bandwidth. Although there are dominant items in
individual applications (e.g., mdljsp2, swm, fpppp), the dominant
cause is different in each case. In the composite results we see that
the largest cause (short FP dependences) is responsible for 37% of
the issue bandwidth, but there are six other causes that account for

at least 4.5% of wasted cycles. Even completely eliminating any
one factor will not necessarily improve performance to the degree
that this graph might imply, because many of the causes overlap.

Not only is there no dominant cause of wasted cycles — there
appears to be no dominant solution. It is thus unlikely that any single
latency-tolerating technique will produce a dramatic increase in the
performance of these programs if it only attacks specific types of
latencies. Instruction scheduling targets several important segments
of the wasted issue bandwidth, but we expect that our compiler
has already achieved most of the available gains in that regard.
Current trends have been to devote increasingly larger amounts of
on-chip area to caches, yet even if memory latencies are completely
eliminated, we cannot achieve 40% utilization of this processor. If
specific latency-hiding techniques are limited, then any dramatic
increase in parallelism needs to come from a general latency-hiding
solution, of which multithreading is an example. The different types
of multithreading have the potential to hide all sources of latency,
but to different degrees.

This becomes clearer if we classify wasted cycles as either vertical


