
CS152 Homework II, Fall 2005

Name:

Homework II is due in class on Thursday December 1st at 11:10 AM.

This class is the Mid-term I review session.

Late homeworks are NOT accepted. Thus, if you will not be attending

the review session, you MUST make arrangements to hand off the

homework to the instructor before class time.

Homework will be graded on effort (did you make an honest attempt to

solve each problem?), not correctness. We will distribute the correct

answers for the homework in the review session, but we will probably

not return the homework you hand in until after the exam. So, you may

wish to make a copy for reference before you hand it in.

This homework will count for approximately 2% of your final grade.

The homework is based on the Mid-term I & II exams from Spring 05.

You may discuss the homework problems with fellow students and the

TAs, but what you write down must be your own work (no copying the

answers from someone else!s homework). Good luck! John Lazzaro

SSID:

1 Set-associative Caches (10 points)

For an N-way set-associative cache, with K cache lines, and B bytes in a cache
block (i.e. in a 4-way set-associative cache, each line has 4 blocks for a total of
4B cache data bytes), derive a general-purpose equation for the fraction of total
cache RAM bits (defined as tag bits + block bits + valid bits) that is devoted
to tag RAM bits.

The equation should take the form 1
1+f(K,B) . Draw a box around your final

equation.

2 Cache Debugging (15 points)

We fabricate a processor with separate instruction and data caches, and with
no address translation hardware (thus, like your class CPU, programs run in
physical address space). The data cache is direct-mapped, is not allocate-on-
write. The data cache has 28-bit cache tags and 4 cache lines. Thus, each line
stores a single word.

After the chip goes out to fab, we realize we made an error in the design,
and the data cache valid bits are permanently stuck at ”1”. The processor has
no special cache-control instructions, just normal LW and SW instructions. We
must assume that on power-up, the cache tag and cache block RAM for each
line will hold arbitrary values. However, the RAMs works correctly – whatever
value it holds remains until the cache state machine changes it. (questions begin
on next page).

Question 2a (8 points). The processor starts reading instructions from loca-
tion 0x000000, in which we can put a program to execute at power up. Write
a program to place at address location 0x00000000 that is guaranteed to fill
the data cache with data that matches the data held in (fully populated) main
memory. Your program may only use LW instructions. A known solution uses
8 LW instructions.

Question 2b (7 points). Assume this bug (stuck V bits) happened in your
direct-mapped instruction cache. Like the data cache, the instruction cache has
28-bit cache tags and 4 cache lines. The processor starts reading instructions
from location 0x000000, in which we can put a program to execute at powerup.
However, all reads (including the first) go through the instruction cache (as the
designers assumed the V bits would be cleared at startup, not set!).

If you are very unlucky, when your machine powers up, the instruction cache
tag and cache data RAMs will hold values that will make it impossible for you
to get control of the machine. Describe example values of the instruction cache
RAMs that would produce this problem (there are many: just one example will
suffice).

3 ECC (18 points)

Below, we show a slide from the Error Correcting Codes lecture.

UC Regents Spring 2005 © UCBCS 152 L19: Error Correcting Codes

What if 2 cosmic rays hit?
D₃D₂D₁P₂D₀P₁P₀

On readout we compute:
P₀ xor D₃ xor D₁ xor D₀ = 1 xor 0 xor 0 xor 0 = 1 = S₀

 P₁ xor D₃ xor D₂ xor D₀ = 0 xor 0 xor 1 xor 0 = 1 = S₁
P₂ xor D₃ xor D₂ xor D₁ = 0 xor 0 xor 1 xor 0 = 1 = S₂

0 11 0 0 1 1We write:

D₃D₂D₁P₂D₀P₁P₀
0 01 0 0 0 1Later, we read:

S₂S₁S₀ = b111 = 7

What does
“7” mean?

0 01 0 0 1 1

“Correcting” this
bit makes things
worse! Thus, this
code corrects
“single” bits only.

D₃D₂D₁P₂D₀P₁P₀
14 36 57 2

Note: it does do
2-bit “detect”
(since S3 S2 S1
does not code 0),
but it does not let
us know that we
can’t correct ...

Cosmic ray hit
D1 and P1.

This slide shows 3 parity bits (Po, P1, P2) protecting 4 data bits (Do, D1, D2, D3),
permitting a single bit error to be corrected. However, as this slide also shows,
if two bit errors occur, the attempt at correction will not work.

In this problem, we extend the code by adding a fourth parity bit, U , com-
puted as:

U = Po xor P1 xor P2 xor Do xor D1 xor D2 xor D3

In this problem, we assume that the U bit cannot be in error (what is written
for U will always be read back correctly). Problem parts appear on the next
page.

Question 3a. (10 points total) We can use the U bit to catch some (but
not all) of the cases where the ECC fails because too many bits in the word
flipped. We catch these cases by checking if the S2S1So value is consistent with
V , where

V = U xor Po xor P1 xor P2 xor Do xor D1 xor D2 xor D3

If V = 1, what subset of the 8 values possible for S2S1So would be consistent
(5 points)?

If V = 0, what subset of values of S2S1S0 would be consistent (5 points)?

Question 3b (8 points). Given the algorithm implied by Question 1a, we
wish to add a Halt (H) logic signal to the ECC readout. The H signal is set to
1 if the S2S1So values cannot be trusted, based on the Question 1a algorithm.
Write the logic equation for H. H is a function of So, S1, S2 and V .

4 Branch Prediction (15 points)

Below, we show a slide from the Advanced Processors lecture.

UC Regents Spring 2005 © UCBCS 152 L20: Advanced Processors I

Simple (”2-bit”) Branch History Table Entry

D Q D Q

The “N” bit.
Prediction for next branch

(1 = take, 0 = not take)

We do not change the prediction the first time it is incorrect. Why?

The “L” bit
Was last prediction correct?

(1 = yes, 0 = no)

BNE R4,R0,loop
SUBI R4,R4,-1loop:

This branch taken 10 times, then
not taken once (end of loop). The
next time we enter the loop, we
would like to predict “take” the
first time through.

ADDI R4,R0,11

This slide shows the two bits (N,L) of a simple branch predictor. Each entry
in the Branch History Table contains these two bits. When fetching a branch,
the Branch Predictor uses these bits to predict “Taken” or “Not Taken”. Once
the processor knows whether the prediction was indeed accurate, it updates the
N,L bits for the branch.

Question 4a. (3 points) Write the logic equation for the “Taken” signal
during a branch fetch, for the two-bit predictor. This equation is a function of
N and/or L.

Question 4b. (12 points) Draw a state machine that shows how the two
branch predictor bits are updated after the processor knows if the branch was
indeed taken or not. This state machine should have four states, corresponding
to the 4 possible values of N and L. State transitions occur after the fate
of a branch is known; thus arcs from one state to another are labeled with
“taken == 0” or “taken == 1”. Be sure to label every state and every arc, and
show which state the machine resets to on powerup. The reset state should be
chosen so that the first BNE execution for the loop shown on the slide will be
predicted correctly.

5 Superpipelining (16 points)

Below, we show a slide from lecture, to refresh your memory about superpipelin-
ing. Note that no arithmetic is necessary to deduce the answers in this section.

UC Regents Spring 2005 © UCBCS 152 L20: Advanced Processors I

Superpipelining: Add more stages
Seconds

Program

 Instructions

Program
= Seconds

Cycle Instruction

Cycles

Goal: Reduce critical path by
adding more pipeline stages.

1600 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 11, NOVEMBER 2001

Fig. 1. Process SEM cross section.

The process was raised from [1] to limit standby power.

Circuit design and architectural pipelining ensure low voltage

performance and functionality. To further limit standby current

in handheld ASSPs, a longer poly target takes advantage of the

versus dependence and source-to-body bias is used

to electrically limit transistor in standby mode. All core

nMOS and pMOS transistors utilize separate source and bulk

connections to support this. The process includes cobalt disili-

cide gates and diffusions. Low source and drain capacitance, as

well as 3-nm gate-oxide thickness, allow high performance and

low-voltage operation.

III. ARCHITECTURE

The microprocessor contains 32-kB instruction and data

caches as well as an eight-entry coalescing writeback buffer.

The instruction and data cache fill buffers have two and four

entries, respectively. The data cache supports hit-under-miss

operation and lines may be locked to allow SRAM-like oper-

ation. Thirty-two-entry fully associative translation lookaside

buffers (TLBs) that support multiple page sizes are provided

for both caches. TLB entries may also be locked. A 128-entry

branch target buffer improves branch performance a pipeline

deeper than earlier high-performance ARM designs [2], [3].

A. Pipeline Organization

To obtain high performance, the microprocessor core utilizes

a simple scalar pipeline and a high-frequency clock. In addition

to avoiding the potential power waste of a superscalar approach,

functional design and validation complexity is decreased at the

expense of circuit design effort. To avoid circuit design issues,

the pipeline partitioning balances the workload and ensures that

no one pipeline stage is tight. The main integer pipeline is seven

stages, memory operations follow an eight-stage pipeline, and

when operating in thumb mode an extra pipe stage is inserted

after the last fetch stage to convert thumb instructions into ARM

instructions. Since thumb mode instructions [11] are 16 b, two

instructions are fetched in parallel while executing thumb in-

structions. A simplified diagram of the processor pipeline is

Fig. 2. Microprocessor pipeline organization.

shown in Fig. 2, where the state boundaries are indicated by

gray. Features that allow the microarchitecture to achieve high

speed are as follows.

The shifter and ALU reside in separate stages. The ARM in-

struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-

ergy consumed to complete a given task. Conventional wisdom

has been that shorter pipelines are more efficient due to re-

Example: 8-stage ARM XScale:
extra IF, ID, data cache stages.

A CPU design team begins with a 5-stage pipelined MIPS (IF:ID:EX:MEM:WR),
and improves it to be an 8-stage pipeline, by adding one pipeline stage to split
the IF, EX, and MEM stages. The branch decision occurs in the second EX
stage. No dynamic branch predictor was added; the architecture is optimized
on the assumption that branches are always taken.

Unfortunately, Berkeley engineers were not hired to do the circuit design,
and the clock rate of the 8-stage design was exactly the same as the 5-stage
design!

Question 5a (4 points). A program has an instruction mix of 40% ALU, 30%
memory ops, and 30% branches. The branches are not taken 25% of the time.
True or False? For this program, the 8-stage design will be just as fast (in
seconds/program CPU time terms) as the 5-stage design (no faster, no slower).
If you answer False, state if the 8-stage design will be faster or slower.

Questions 5b-d (12 points total).
The circuit designers were promoted to upper management (welcome to the

real world), and Cal engineers took their place (the Cal hires did get a good
stock option package, though).

The 8-stage pipelined was redesigned, and the clock rate is now 30% faster
than the original 5-stage design. The number of clock cycles it takes for an L1
or L2 cache hit is unchanged from the 5-stage design. A good branch predictor
was also added to the design (for the questions below, assume it is perfect for the
programs under test). However, the DRAM memory system was not changed,
and so the number of nanoseconds a DRAM read access takes is unchanged.

Questions 5b (4 points). True or False? For programs where essentially all
LWs hit the cache, and where the branch predictor works very well, the cycles
per instruction (CPI) for LW instructions for the 8-stage pipeline is lower (i.e.
better CPI) than for the 5-stage pipeline.

Questions 5c (4 points). True or False? For programs that do not have
good locality, and thus many LWs require DRAM access, the CPI for LW in-
structions for the 8-stage pipeline is higher (i.e. worse CPI) than for the 5-stage
pipeline.

Questions 5d (4 points). A program has 20% ALU, 80% memory ops, 0%
branches. The memory operations do not have good locality, and thus many
LWs require DRAM accesses.
True or False? The performance of this program (in seconds/program CPU
time terms) will be significantly worse (more seconds/program) for the 8-stage
pipeline than for the 5-stage pipeline.

